FAI: Advancing Deep Learning Towards Spatial Fairness

FAI:推进深度学习迈向空间公平

基本信息

  • 批准号:
    2147195
  • 负责人:
  • 金额:
    $ 75.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

The goal of spatial fairness is to reduce biases that have significant linkage to the locations or geographical areas of data samples. Such biases, if left unattended, can cause or exacerbate unfair distribution of resources, social division, spatial disparity, and weaknesses in resilience or sustainability. Spatial fairness is urgently needed for the use of artificial intelligence in a large variety of real-world problems such as agricultural monitoring and disaster management. Agricultural products, including crop maps and acreage estimates, are used to inform important decisions such as the distribution of subsidies and providing farm insurance. Inaccuracies and inequities produced by spatial biases adversely affect these decisions. Similarly, effective and fair mapping of natural disasters such as floods or fires is critical to inform live-saving actions and quantify damages and risks to public infrastructures, which is related to insurance estimation. Machine learning, in particular deep learning, has been widely adopted for spatial datasets with promising results. However, straightforward applications of machine learning have found limited success in preserving spatial fairness due to the variation of data distribution, data quantity, and data quality. The goal of this project is to develop a new generation of learning frameworks to explicitly preserve spatial fairness. The results and code will be made freely available and integrated into existing geospatial software. The methods will also be tested for incorporation in existing real systems (crop and water monitoring). This project aims to advance deep learning methods toward spatial fairness via four innovations. First, new statistical formulations of spatial fairness will be investigated to address unique challenges brought by the continuous spatial domain, particularly due to a variety of ways to partition the space and create location-groups for fairness evaluation, and the fact that statistical conclusions are sensitive to changes in space-partitionings. Second, new network architectures will be developed to improve the spatial fairness by mitigating the conflicts amongst different locations due to the shift of data distribution over space. Third, new fairness-driven adversarial learning strategies will be used to guide the training to converge to parameters that can maintain a high overall solution quality while maximizing spatial fairness across locations. Finally, a knowledge-enhanced approach will be proposed, which integrates general physical relationships to mitigate data-inequality incurred spatial biases, and simulates relevant variables and parameters in underlying physical processes to enhance knowledge-based interpretability of spatial fairness.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
空间公平的目标是减少与数据样本的位置或地理区域有显著联系的偏差。这种偏见如果置之不理,可能导致或加剧资源的不公平分配、社会分裂、空间差距以及复原力或可持续性的弱点。人工智能在农业监测和灾害管理等现实问题中的应用迫切需要空间公平性。农业产品,包括作物分布图和种植面积估计,被用来为诸如补贴分配和提供农业保险等重要决策提供信息。空间偏差造成的不准确和不公平对这些决策产生不利影响。同样,有效和公平地绘制洪水或火灾等自然灾害的地图,对于为拯救生命的行动提供信息和量化公共基础设施的损害和风险至关重要,这与保险估计有关。机器学习,特别是深度学习,已被广泛应用于空间数据集,并取得了可喜的成果。然而,由于数据分布、数据数量和数据质量的变化,机器学习的直接应用在保持空间公平性方面取得了有限的成功。该项目的目标是开发新一代的学习框架,以明确地保持空间公平性。结果和代码将免费提供,并集成到现有的地理空间软件中。还将对这些方法进行测试,以便将其纳入现有的实际系统(作物和水监测)。该项目旨在通过四项创新推动深度学习方法实现空间公平。首先,将研究新的空间公平性统计公式,以解决连续空间域带来的独特挑战,特别是由于空间划分和创建公平评估的位置群的方式多种多样,以及统计结论对空间划分变化的敏感性。其次,将开发新的网络架构,通过减轻由于数据分布在空间上的转移而导致的不同位置之间的冲突来提高空间公平性。第三,将使用新的公平驱动的对抗学习策略来指导训练收敛到能够保持高整体解决方案质量的参数,同时最大限度地提高各个位置的空间公平性。最后,提出了一种知识增强方法,该方法整合了一般物理关系以减轻数据不平等引起的空间偏差,并模拟了潜在物理过程中的相关变量和参数,以增强基于知识的空间公平可解释性。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sailing in the location-based fairness-bias sphere
在基于位置的公平偏见领域航行
Meta-Transfer Learning: An application to Streamflow modeling in River-streams
Physics-guided machine learning from simulated data with different physical parameters
  • DOI:
    10.1007/s10115-023-01864-z
  • 发表时间:
    2023-03-31
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Chen, Shengyu;Kalanat, Nasrin;Jia, Xiaowei
  • 通讯作者:
    Jia, Xiaowei
Statistically-Guided Deep Network Transformation to Harness Heterogeneity in Space (Extended Abstract)
  • DOI:
    10.24963/ijcai.2022/752
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yiqun Xie;Erhu He;X. Jia;Han Bao;Xun Zhou;Rahul Ghosh;Praveen Ravirathinam
  • 通讯作者:
    Yiqun Xie;Erhu He;X. Jia;Han Bao;Xun Zhou;Rahul Ghosh;Praveen Ravirathinam
Fairness by “Where”: A Statistically-Robust and Model-Agnostic Bi-level Learning Framework
“Where”的公平性:统计稳健且与模型无关的双层学习框架
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaowei Jia其他文献

Enhanced photoexcited carrier separation in Ta3N5/SrTaO2N (1D/0D) heterojunctions for highly efficient visible light-driven hydrogen evolution
增强 Ta3N5/SrTaO2N (1D/0D) 异质结中的光激发载流子分离,实现高效可见光驱动的析氢
  • DOI:
    10.1016/j.apsusc.2020.145915
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Xiaowei Jia;Wenjing Chen;Yunfeng Li;Xuanbo Zhou;Xiaodan Yu;Yan Xing
  • 通讯作者:
    Yan Xing
Highly crystalline sulfur and oxygen co-doped g-C3N4 nanosheets as an advanced photocatalyst for efficient hydrogen generation
高结晶硫和氧共掺杂 g-C3N4 纳米片作为先进光催化剂用于高效制氢
  • DOI:
    10.1039/d2cy00824f
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Xiaowei Jia;Yunfeng Li;Xianchun Liu;Xiaodan Yu;Cong Wang;Zhan Shi;Yan Xing
  • 通讯作者:
    Yan Xing
Fe-doped perovskite-like oxide KCuTa3O9 for photocatalytic hydrogen evolution under visible light irradiation
  • DOI:
    10.1016/j.jallcom.2023.170635
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Xiaowei Jia;Xianchun Liu;Ruyu Zhang;Anqi Xie;Yueran Li;Xiaodan Yu;Min Yu;Yunfeng Li;Zhan Shi;Yan Xing
  • 通讯作者:
    Yan Xing
Spatial-Logic-Aware Weakly Supervised Learning for Flood Mapping on Earth Imagery
地球图像洪水测绘的空间逻辑感知弱监督学习
  • DOI:
    10.1609/aaai.v38i20.30253
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zelin Xu;Tingsong Xiao;Wenchong He;Yu Wang;Zhe Jiang;Shigang Chen;Yiqun Xie;Xiaowei Jia;Da Yan;Yang Zhou
  • 通讯作者:
    Yang Zhou
Analysis of Energy Consumption Structure on CO2 Emission and Economic Sustainable Growth
能源消费结构对CO2排放与经济可持续增长的影响分析
  • DOI:
    10.1016/j.egyr.2022.02.296
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Zhiqiang Wang;Xiaowei Jia
  • 通讯作者:
    Xiaowei Jia

Xiaowei Jia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaowei Jia', 18)}}的其他基金

CAREER: Combining Machine Learning and Physics-based Modeling Approaches for Accelerating Scientific Discovery
职业:结合机器学习和基于物理的建模方法来加速科学发现
  • 批准号:
    2239175
  • 财政年份:
    2023
  • 资助金额:
    $ 75.51万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Small: Physics Guided Graph Networks for Modeling Water Dynamics in Freshwater Ecosystems
合作研究:III:小型:用于模拟淡水生态系统中水动力学的物理引导图网络
  • 批准号:
    2316305
  • 财政年份:
    2023
  • 资助金额:
    $ 75.51万
  • 项目类别:
    Standard Grant
CDS&E: Physics Guided Super-Resolution for Turbulent Transport
CDS
  • 批准号:
    2203581
  • 财政年份:
    2022
  • 资助金额:
    $ 75.51万
  • 项目类别:
    Standard Grant

相似海外基金

EAGER: CET: Advancing Sustainable Cathode Recycling of Spent Lithium-Ion Batteries using Deep Eutectic Solvents
EAGER:CET:使用低共熔溶剂推进废旧锂离子电池的可持续阴极回收
  • 批准号:
    2343621
  • 财政年份:
    2024
  • 资助金额:
    $ 75.51万
  • 项目类别:
    Standard Grant
III: Medium: Advancing Deep Learning for Inverse Modeling
III:媒介:推进逆向建模的深度学习
  • 批准号:
    2313174
  • 财政年份:
    2023
  • 资助金额:
    $ 75.51万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Advancing Data-Driven Deep Coupling of Computational Simulations and Experiments
合作研究:REU 站点:推进数据驱动的计算模拟和实验的深度耦合
  • 批准号:
    2243981
  • 财政年份:
    2023
  • 资助金额:
    $ 75.51万
  • 项目类别:
    Standard Grant
Advancing breast cancer risk prediction in national cohorts: the role of mammogram-based deep learning
推进国家队列中的乳腺癌风险预测:基于乳房 X 光检查的深度学习的作用
  • 批准号:
    10734544
  • 财政年份:
    2023
  • 资助金额:
    $ 75.51万
  • 项目类别:
Collaborative Research: REU Site: Advancing Data-Driven Deep Coupling of Computational Simulations and Experiments
合作研究:REU 站点:推进数据驱动的计算模拟和实验的深度耦合
  • 批准号:
    2243980
  • 财政年份:
    2023
  • 资助金额:
    $ 75.51万
  • 项目类别:
    Standard Grant
Advancing Transportation Safety and Sustainability Using Big Data and Deep Learning
利用大数据和深度学习促进运输安全和可持续发展
  • 批准号:
    RGPIN-2018-03970
  • 财政年份:
    2022
  • 资助金额:
    $ 75.51万
  • 项目类别:
    Discovery Grants Program - Individual
Advancing Transportation Safety and Sustainability Using Big Data and Deep Learning
利用大数据和深度学习促进运输安全和可持续发展
  • 批准号:
    RGPIN-2018-03970
  • 财政年份:
    2021
  • 资助金额:
    $ 75.51万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: SCALE MoDL: Advancing Theoretical Minimax Deep Learning: Optimization, Resilience, and Interpretability
合作研究:SCALE MoDL:推进理论极小极大深度学习:优化、弹性和可解释性
  • 批准号:
    2134148
  • 财政年份:
    2021
  • 资助金额:
    $ 75.51万
  • 项目类别:
    Continuing Grant
Collaborative Research: SCALE MoDL: Advancing Theoretical Minimax Deep Learning: Optimization, Resilience, and Interpretability
合作研究:SCALE MoDL:推进理论极小极大深度学习:优化、弹性和可解释性
  • 批准号:
    2134223
  • 财政年份:
    2021
  • 资助金额:
    $ 75.51万
  • 项目类别:
    Continuing Grant
Advancing cancer understanding and diagnosis through molecular expression-based deep learning
通过基于分子表达的深度学习促进癌症的理解和诊断
  • 批准号:
    559522-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 75.51万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了