Advancing breast cancer risk prediction in national cohorts: the role of mammogram-based deep learning

推进国家队列中的乳腺癌风险预测:基于乳房 X 光检查的深度学习的作用

基本信息

项目摘要

To date, significant efforts devoted to developing breast cancer risk prediction models that produce modest discriminatory accuracy in the range of 59-68% and underperform in Black women compared to non-Hispanic white (NHW) women, limiting their clinical impact on equitable precision-based/personalized breast cancer prevention and screening. Emerging data suggest that deep learning (DL) models based on mammographic images outperform traditional breast cancer risk prediction models based on clinical and risk factors and breast density alone. Yet there remain major gaps to resolve before widespread roll out of DL methods in order to enhance outcomes and reduce health disparities in breast cancer. These models have been developed in clinical or screening cohorts and require further validation in “real world” settings. Equally unknown is how performance of MDL risk models may differ between Black and NHW women, as few previous studies included sufficient numbers of Black women for meaningful interpretation. Finally, the combination of polygenic risk scores (PRS) and MDL risk scores could significantly improve clinical utility of these risk stratification tools, yet MDL and PRS clinical rollout are largely being evaluated separately, primarily due to lack of availability of both mammographic and genetic data in the same study population. We propose to leverage existing unparalleled resources from two complementary national cohorts, the Sister Study and the Black Women’s Health Study, with digital screening mammograms, genomic data, and extensive epidemiologic and clinical data to address these evidence gaps (ncases, 971; ncontrols, 8793). In Aim 1, we will validate the performance and clinical risk stratification of Mirai, a published MDL model with the highest accuracy in screening cohorts to date, in our epidemiologic cohorts. In addition to considering breast cancer risk overall, we will evaluate performance of this MDL model for early and advanced stage and for ER+ and ER– breast cancer, outcomes with significant clinical implications for prognosis and treatment. In Aim 2, we will evaluate the addition of PRS to MDL risk scores in improving risk stratification, and determine net reclassification. In Aim 3, we will determine whether MDL models perform equally well and impacts risk stratification within strata of breast density, as defined in widespread implementation of breast density notification legislation (dense vs. non-dense). These results may provide crucial data for guiding follow up and surveillance of women with and without dense breasts. To ensure equitable application of results, we will examine differences in results between Black and NHW women in all aims. MDL models hold great promise as breast cancer risk assessment tools, and offer clinical efficiency and optimization by eliminating the need to collect detailed family history and risk factor data. Validation in “real world” epidemiologic cohorts will advance the field substantially. The research proposed here has great potential to identify women at both high and low risk of breast cancer, inform personalized screening and risk reduction strategies, and even to reduce racial disparities in breast cancer outcomes.
到目前为止,致力于开发乳腺癌风险预测模型的重大努力产生了适度的 与非西班牙裔相比,黑人女性的歧视准确率在59-68%之间,表现不佳 白人(NHW)女性,限制她们对公平精确/个性化乳腺癌的临床影响 预防和筛查。新出现的数据表明,基于乳房X光检查的深度学习(DL)模型 图像优于基于临床和风险因素以及乳腺的传统乳腺癌风险预测模型 仅密度一项。然而,在广泛推广数字学习方法之前,仍有重大差距需要解决,以便 改善结果,减少乳腺癌患者的健康差距。这些型号是在 临床或筛查队列,并需要在“真实世界”环境中进一步验证。同样未知的是它是如何 MDL风险模型在黑人和nhw女性中的表现可能不同,因为以前很少有研究包括在内 有足够数量的黑人女性来进行有意义的解读。最后,多基因风险的组合 评分(PR)和MDL风险评分可以显著提高这些风险分层工具的临床实用性,但 MDL和PRS的临床推广在很大程度上是单独进行评估的,主要是因为两者都缺乏可用性 同一研究人群中的乳房X光检查和遗传数据。我们建议利用现有的无与伦比的 资源来自两个互补的国家队列,姐妹研究和黑人妇女健康研究, 通过数字筛查乳房X光照片、基因组数据以及广泛的流行病学和临床数据来处理 这些证据差距(n病例,971;n对照,8793)。在目标1中,我们将验证性能和临床风险 Mirai的分层,一个发表的MDL模型,到目前为止在队列筛选中具有最高的准确性,在我们的 流行病学队列。除了全面考虑乳腺癌的风险外,我们还将评估 对于早期和晚期以及ER+和ER-乳腺癌,这种MDL模型的结果具有显著意义 对预后和治疗的临床意义。在目标2中,我们将评估将PRS添加到MDL风险 在改进风险分层方面的得分,并确定净重新分类。在目标3中,我们将确定是否 MDL模型执行得同样好,并影响乳房密度层内的风险分层,如 广泛实施乳房密度通知立法(密集与非密集)。这些结果可能 为指导对乳房致密和乳房不致密的妇女的随访和监测提供重要数据。为了确保 公平应用结果,我们将检查黑人和nhw妇女在结果上的所有差异 目标。MDL模型作为乳腺癌风险评估工具具有很大的前景,并提供临床效率和 通过消除收集详细的家族病史和风险因素数据的需要进行优化。“REAL”中的验证 世界“流行病学队列将大大推动这一领域的发展。这里提出的研究有很大的意义 有可能识别乳腺癌高风险和低风险女性,提供个性化筛查和风险信息 减少战略,甚至减少乳腺癌预后的种族差异。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kimberly A Bertrand其他文献

Planetary Health Diet Index in relation to mortality in a prospective cohort study of United States Black females
一项针对美国黑人女性的前瞻性队列研究:行星健康饮食指数与死亡率的关系
  • DOI:
    10.1016/j.ajcnut.2025.01.023
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    6.900
  • 作者:
    Yifei Shan;Kimberly A Bertrand;Jessica L Petrick;Shanshan Sheehy;Julie R Palmer
  • 通讯作者:
    Julie R Palmer
Hormone therapy use and young-onset breast cancer: a pooled analysis of prospective cohorts included in the Premenopausal Breast Cancer Collaborative Group
激素治疗的使用与早发性乳腺癌:绝经前乳腺癌协作组纳入的前瞻性队列的荟萃分析
  • DOI:
    10.1016/s1470-2045(25)00211-6
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    35.900
  • 作者:
    Katie M O’Brien;Melissa G House;Mandy Goldberg;Michael E Jones;Clarice R Weinberg;Amy Berrington de Gonzalez;Kimberly A Bertrand;William J Blot;Jessica Clague DeHart;Fergus J Couch;Montserrat Garcia-Closas;Graham G Giles;Victoria A Kirsh;Cari M Kitahara;Woon-Puay Koh;Hannah Lui Park;Roger L Milne;Julie R Palmer;Alpa V Patel;Thomas E Rohan;Dale P Sandler
  • 通讯作者:
    Dale P Sandler

Kimberly A Bertrand的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kimberly A Bertrand', 18)}}的其他基金

Socio-environmental context in monoclonal gammopathy of undetermined significance (MGUS) disparities
意义未明的单克隆丙种球蛋白病 (MGUS) 差异的社会环境背景
  • 批准号:
    10622591
  • 财政年份:
    2021
  • 资助金额:
    $ 69.83万
  • 项目类别:
Socio-environmental context in monoclonal gammopathy of undetermined significance (MGUS) disparities
意义未明的单克隆丙种球蛋白病 (MGUS) 差异的社会环境背景
  • 批准号:
    10410510
  • 财政年份:
    2021
  • 资助金额:
    $ 69.83万
  • 项目类别:
Determinants of the racial/ethnic disparity in MGUS risk: An epidemiologic study in 4 cohorts
MGUS 风险种族/民族差异的决定因素:4 个队列的流行病学研究
  • 批准号:
    10217882
  • 财政年份:
    2021
  • 资助金额:
    $ 69.83万
  • 项目类别:
Socio-environmental context in monoclonal gammopathy of undetermined significance (MGUS) disparities
意义未明的单克隆丙种球蛋白病 (MGUS) 差异的社会环境背景
  • 批准号:
    10217474
  • 财政年份:
    2021
  • 资助金额:
    $ 69.83万
  • 项目类别:
Determinants of the racial/ethnic disparity in MGUS risk: An epidemiologic study in 4 cohorts
MGUS 风险种族/民族差异的决定因素:4 个队列的流行病学研究
  • 批准号:
    10491335
  • 财政年份:
    2021
  • 资助金额:
    $ 69.83万
  • 项目类别:
A Follow-up Study for Causes of Cancer in Black Women
黑人女性癌症病因的后续研究
  • 批准号:
    10701009
  • 财政年份:
    2012
  • 资助金额:
    $ 69.83万
  • 项目类别:
A Follow-up Study for Causes of Cancer in Black Women
黑人女性癌症病因的后续研究
  • 批准号:
    10523801
  • 财政年份:
    2012
  • 资助金额:
    $ 69.83万
  • 项目类别:

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 69.83万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 69.83万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 69.83万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 69.83万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 69.83万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 69.83万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 69.83万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 69.83万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 69.83万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 69.83万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了