CRII: SaTC: Transparent Capture and Aggregation of Secure Data Provenance for Smart Devices

CRII:SaTC:智能设备安全数据来源的透明捕获和聚合

基本信息

  • 批准号:
    1657534
  • 负责人:
  • 金额:
    $ 17.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-03-01 至 2020-02-29
  • 项目状态:
    已结题

项目摘要

Computers are increasingly pervasive and diverse, embedded in devices ranging from smart phones and wearable computers to home automation devices and automotive systems. This explosive growth has far outpaced the speed with which device behaviors can be analyzed and understood, creating unprecedented opportunities for "Internet of Things" devices to engage in nefarious activities such as violating users' privacy or spreading malware. This project is designing and implementing new frameworks that track the provenance (i.e., history) of data processing and communications in systems of smart devices. To facilitate the identification of malicious behaviors, the project is developing non-invasive techniques for extracting device provenance, and presenting a public accountability infrastructure through which the history of interactions between smart devices can be analyzed.In light of the great diversity of computing platforms in this environment, the efficient extraction of fine-grained data provenance is difficult. To overcome these challenges, the researchers are designing and implementing minimally-invasive mechanisms and associated algorithms for the observation of smart device activity at multiple system layers. The expected results include the development of a retrofit mechanism that leverages program instrumentation to enable complete provenance mediation for commodity-off-the-shelf smart devices, and a network mediation point that monitors inter-device communication in order to extract network provenance from systems of devices. Finally, the project is developing algorithms and protocols to securely extract and aggregate device provenance to a centralized repository, enabling provenance-based crowd-sourced monitoring of the Internet of Things. This work will not only establish foundations for trust in the functionality of smart devices, but also enable further research in provenance-based analytics.
计算机越来越普遍和多样化,嵌入到从智能手机和可穿戴计算机到家庭自动化设备和汽车系统的各种设备中。这种爆发式的增长速度远远超过了分析和理解设备行为的速度,为物联网设备从事侵犯用户隐私或传播恶意软件等邪恶活动创造了前所未有的机会。该项目正在设计和实施新的框架,以跟踪智能设备系统中数据处理和通信的来源(即历史)。为了便于识别恶意行为,该项目正在开发非侵入性的设备来源提取技术,并提供一个公共问责基础设施,通过该基础设施可以分析智能设备之间的交互历史。鉴于这种环境中计算平台的巨大多样性,高效提取细粒度数据来源是困难的。为了克服这些挑战,研究人员正在设计和实施微创机制和相关算法,以在多个系统层观察智能设备的活动。预期的结果包括开发一种利用程序工具来实现对商品现成智能设备的完整来源调解的改造机制,以及一个监控设备间通信以便从设备系统中提取网络来源的网络中介点。最后,该项目正在开发算法和协议,以安全地提取设备来源并将其聚合到中央存储库,从而实现基于来源的众包监控物联网。这项工作不仅将为人们对智能设备功能的信任奠定基础,还将使基于来源的分析得到进一步研究。

项目成果

期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Emerging Threats in Internet of Things Voice Services
  • DOI:
    10.1109/msec.2019.2910013
  • 发表时间:
    2019-07-01
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Kumar, Deepak;Paccagnella, Riccardo;Bailey, Michael
  • 通讯作者:
    Bailey, Michael
UNICORN: Runtime Provenance-Based Detector for Advanced Persistent Threats
  • DOI:
    10.14722/ndss.2020.24046
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xueyuan Han;Thomas Pasquier;Adam Bates;James W. Mickens;M. Seltzer
  • 通讯作者:
    Xueyuan Han;Thomas Pasquier;Adam Bates;James W. Mickens;M. Seltzer
AliDrone: Enabling Trustworthy Proof-of-Alibi for Commercial Drone Compliance
Analysis of Privacy Protections in Fitness Tracking Social Networks -or- You can run, but can you hide?
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wajih Ul Hassan;Saad Hussain;Adam Bates
  • 通讯作者:
    Wajih Ul Hassan;Saad Hussain;Adam Bates
Towards an accountable software-defined networking architecture
迈向负责任的软件定义网络架构
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adam Bates其他文献

Entity C WasGeneratedBy Entity A Entity B Activity Used Used WasControlledByAgent
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Adam Bates
  • 通讯作者:
    Adam Bates
GRASP: Hardening Serverless Applications through Graph Reachability Analysis of Security Policies
GRASP:通过安全策略的图形可达性分析强化无服务器应用程序
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Isaac Polinsky;Pubali Datta;Adam Bates;W. Enck
  • 通讯作者:
    W. Enck
Detecting Compute Cloud Co-residency with Network Flow Watermarking Techniques
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Adam Bates
  • 通讯作者:
    Adam Bates
Unexpected landscape-scale contemporary gene flow and fine-scale genetic diversity in rural hedgehogs
  • DOI:
    10.1007/s10592-025-01676-4
  • 发表时间:
    2025-02-25
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Hongli Yu;Lauren J. Moore;Axel Barlow;Louise K. Gentle;Deborah A. Dawson;Gavin J. Horsburgh;Lucy Knowles;Philip J. Baker;Adam Bates;Helen Hicks;Silviu Petrovan;Sarah Perkins;Richard W. Yarnell
  • 通讯作者:
    Richard W. Yarnell
Poster: Sometimes, You Aren’t What You Do: Mimicry Attacks against Provenance Graph Host Intrusion Detection Systems
海报:有时,你不是你所做的:针对 Provenance Graph 主机入侵检测系统的模仿攻击
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akul Goyal;Xueyuan Han;Gang Wang;Adam Bates
  • 通讯作者:
    Adam Bates

Adam Bates的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adam Bates', 18)}}的其他基金

I-Corps: Translation potential of using provenance-based threat detection for improving cybersecurity
I-Corps:使用基于来源的威胁检测来提高网络安全的转化潜力
  • 批准号:
    2424261
  • 财政年份:
    2024
  • 资助金额:
    $ 17.47万
  • 项目类别:
    Standard Grant
SaTC: CORE: Medium: Principled Foundations for the Design and Evaluation of Graph-Based Host Intrusion Detection Systems
SaTC:核心:中:基于图的主机入侵检测系统的设计和评估的原则基础
  • 批准号:
    2055127
  • 财政年份:
    2021
  • 资助金额:
    $ 17.47万
  • 项目类别:
    Standard Grant
CAREER: Scalable Information Flow Monitoring and Enforcement through Data Provenance Unification
职业:通过数据来源统一进行可扩展的信息流监控和执行
  • 批准号:
    1750024
  • 财政年份:
    2018
  • 资助金额:
    $ 17.47万
  • 项目类别:
    Continuing Grant

相似海外基金

CRII: SaTC: Automated Knowledge Representation for IoT Cybersecurity Regulations
CRII:SaTC:物联网网络安全法规的自动化知识表示
  • 批准号:
    2348147
  • 财政年份:
    2024
  • 资助金额:
    $ 17.47万
  • 项目类别:
    Standard Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 17.47万
  • 项目类别:
    Standard Grant
CRII: SaTC: Privacy vs. Accountability--Usable Deniability and Non-Repudiation for Encrypted Messaging Systems
CRII:SaTC:隐私与责任——加密消息系统的可用否认性和不可否认性
  • 批准号:
    2348181
  • 财政年份:
    2024
  • 资助金额:
    $ 17.47万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
  • 批准号:
    2327427
  • 财政年份:
    2024
  • 资助金额:
    $ 17.47万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 17.47万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 17.47万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Evolving I/O Protocols for Confidential Computing
CRII:SaTC:用于机密计算的不断发展的 I/O 协议
  • 批准号:
    2348130
  • 财政年份:
    2024
  • 资助金额:
    $ 17.47万
  • 项目类别:
    Standard Grant
CRII: SaTC: Enforcing Expressive Security Policies using Trusted Execution Environments
CRII:SaTC:使用可信执行环境执行表达性安全策略
  • 批准号:
    2348304
  • 财政年份:
    2024
  • 资助金额:
    $ 17.47万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 17.47万
  • 项目类别:
    Continuing Grant
CRII: SaTC: The Right to be Forgotten in Follow-ups of Machine Learning: When Privacy Meets Explanation and Efficiency
CRII:SaTC:机器学习后续中被遗忘的权利:当隐私遇到解释和效率时
  • 批准号:
    2348177
  • 财政年份:
    2024
  • 资助金额:
    $ 17.47万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了