RINGS: Object-Oriented Video Analytics for Next-Generation Mobile Environments
RINGS:下一代移动环境的面向对象视频分析
基本信息
- 批准号:2147909
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Over the past few decades, cellular networks have evolved to deliver improved performance across increasingly heterogeneous components spanning the network edge (e.g., user devices) to base stations to traditional cloud backends. A key motivator behind these advances is to enhance the support for edge applications, especially video analysis (VA). Yet VA applications are currently not structured to fully leverage those advances. A primary issue is the lack of structured frameworks to develop and run VA applications, which in turn prevents the deployment and optimizations required to take advantage of all that cellular networks (and their edge-cloud hierarchies) have to offer. To tackle this limitation, the proposed work advocates for a re-designed VA software stack that explicitly ties VA operations and requirements to the resources, interfaces, and vantage points that each platform element in a mobile edge-cloud hierarchy brings. To achieve this goal, the project takes a bottom-up, three-pronged approach that involves (1) developing a new object-oriented query language for VA applications that makes the aforementioned characteristics explicit and observable, (2) leveraging those features to develop a suite of resource-aware optimizations to VA computations that can operate under diverse (and restricted) edge constraints, and (3) designing a novel task placement engine that automatically adapts and operates VA applications across edge-cloud hierarchies.Owing to the widespread use of VA applications in sectors spanning traffic control, to autonomous vehicles, to disaster relief, the proposed research promises benefits to a large part of the population. The key improvements will come along two axes – (1) replacing painstaking manual analysis with automatic determination of the appropriate interactions between VA applications and emerging mobile networking infrastructure, and (2) democratizing the use of edge networking infrastructure – and will target two different groups. On the one hand, the proposed frameworks will simplify the creation of cutting-edge VA applications for developers by automatically deciding what public edge infrastructure to use and how to use it most effectively (in terms of cost, accuracy, and performance). On the other hand, the developed systems will assist network operators in identifying the most fruitful resource enhancements and helpful information about the platform to expose to application elements. The project also involves outreach efforts to attract students from populations currently under-represented in computer science. Key to these efforts is magnifying the interdisciplinary nature of edge-based VA applications that span mobile systems and networks, computer vision, programming languages, and machine learning. The software and research artifacts designed as part of this project are released on a regularly-maintained, public website.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的几十年里,蜂窝网络已经发展到可以在跨越网络边缘(例如用户设备)、基站和传统云后端的日益异构的组件中提供更高的性能。这些进步背后的一个关键推动力是增强对边缘应用程序的支持,特别是视频分析(VA)。然而,VA 应用程序目前的结构尚未充分利用这些进步。主要问题是缺乏开发和运行 VA 应用程序的结构化框架,这反过来又阻碍了利用蜂窝网络(及其边缘云层次结构)所提供的所有功能所需的部署和优化。为了解决这一限制,拟议的工作提倡重新设计 VA 软件堆栈,将 VA 操作和要求与移动边缘-云层次结构中每个平台元素带来的资源、接口和优势点明确联系起来。为了实现这一目标,该项目采用自下而上、三管齐下的方法,其中包括(1)为 VA 应用程序开发一种新的面向对象的查询语言,使上述特征变得明确且可观察,(2)利用这些功能开发一套可在不同(且受限)边缘约束下运行的 VA 计算资源感知优化,以及(3)设计一种新颖的任务放置引擎,自动 跨边缘云层次结构调整和运行 VA 应用程序。由于 VA 应用程序在交通控制、自动驾驶汽车、救灾等领域的广泛使用,拟议的研究有望使大部分人口受益。关键改进将沿着两个方向进行——(1)用自动确定VA应用程序和新兴移动网络基础设施之间适当交互的方式取代繁琐的手动分析,(2)使边缘网络基础设施的使用民主化——并将针对两个不同的群体。一方面,所提出的框架将通过自动决定使用哪些公共边缘基础设施以及如何最有效地使用它(在成本、准确性和性能方面)来简化开发人员尖端 VA 应用程序的创建。另一方面,开发的系统将帮助网络运营商识别最富有成效的资源增强和有关平台的有用信息,以向应用程序元素公开。该项目还涉及外展工作,以吸引目前计算机科学领域代表性不足的人群中的学生。这些努力的关键是放大基于边缘的 VA 应用程序的跨学科性质,这些应用程序涵盖移动系统和网络、计算机视觉、编程语言和机器学习。作为该项目一部分设计的软件和研究成果在定期维护的公共网站上发布。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GEMEL: Model Merging for Memory-Efficient, Real-Time Video Analytics at the Edge
- DOI:
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Arthi Padmanabhan;Neil Agarwal;Anand Iyer;Ganesh Ananthanarayanan;Yuanchao Shu;Nikolaos Karianakis;G. Xu;R. Netravali
- 通讯作者:Arthi Padmanabhan;Neil Agarwal;Anand Iyer;Ganesh Ananthanarayanan;Yuanchao Shu;Nikolaos Karianakis;G. Xu;R. Netravali
TOD: GPU-accelerated Outlier Detection via Tensor Operations
- DOI:10.14778/3570690.3570703
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Yue Zhao;George H. Chen;Zhihao Jia
- 通讯作者:Yue Zhao;George H. Chen;Zhihao Jia
Collage: Seamless Integration of Deep Learning Backends with Automatic Placement
- DOI:10.1145/3559009.3569651
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Byungsoo Jeon;Sunghyun Park;Peiyuan Liao;Sheng Xu;Tianqi Chen;Zhihao Jia
- 通讯作者:Byungsoo Jeon;Sunghyun Park;Peiyuan Liao;Sheng Xu;Tianqi Chen;Zhihao Jia
RECL: Responsive Resource-Efficient Continuous Learning for Video Analytics
RECL:视频分析的响应式资源高效持续学习
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Khani, Mehrdad;Ananthanarayanan, Ganesh;Hsieh, Kevin;Jiang, Junchen;Netravali, Ravi;Shu, Yuanchao;Alizadeh, Mohammad;Bahl, Victor
- 通讯作者:Bahl, Victor
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ravi Netravali其他文献
Ravi Netravali的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ravi Netravali', 18)}}的其他基金
CNS Core: Small: Fast or Dynamic Websites? Eliminating the Need to Choose
CNS 核心:小型:快速还是动态网站?
- 批准号:
2101881 - 财政年份:2021
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CNS Core: Small: Fast or Dynamic Websites? Eliminating the Need to Choose
CNS 核心:小型:快速还是动态网站?
- 批准号:
2151630 - 财政年份:2021
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: A Unified Prefetch Framework for Approximation-Tolerant Interactive Applications
合作研究:CNS Core:Medium:用于近似容忍交互式应用程序的统一预取框架
- 批准号:
2140552 - 财政年份:2021
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: A Unified Prefetch Framework for Approximation-Tolerant Interactive Applications
合作研究:CNS Core:Medium:用于近似容忍交互式应用程序的统一预取框架
- 批准号:
2105773 - 财政年份:2021
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CNS Core: Small: Not All Cameras are Created Equal: Systems Support for Highly Adaptive Video Analytics Pipelines
CNS 核心:小型:并非所有摄像机都是一样的:对高度自适应视频分析管道的系统支持
- 批准号:
2153449 - 财政年份:2021
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CAREER: Adaptive Web Execution: Supporting Billions of Diverse Users by Adapting Execution to Available Resources
职业:自适应 Web 执行:通过使执行适应可用资源来支持数十亿不同的用户
- 批准号:
2152313 - 财政年份:2021
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
CNS Core: Small: Not All Cameras are Created Equal: Systems Support for Highly Adaptive Video Analytics Pipelines
CNS 核心:小型:并非所有摄像机都是一样的:对高度自适应视频分析管道的系统支持
- 批准号:
2006437 - 财政年份:2020
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CAREER: Adaptive Web Execution: Supporting Billions of Diverse Users by Adapting Execution to Available Resources
职业:自适应 Web 执行:通过使执行适应可用资源来支持数十亿不同的用户
- 批准号:
1943621 - 财政年份:2020
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
相似海外基金
Robust Three-Dimensional Pattern Recognition based on Object Oriented Data Analysis
基于面向对象数据分析的鲁棒三维模式识别
- 批准号:
23K16900 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CRII: SHF: Codata: A Logical Fusion of Object-Oriented and Functional Programming
CRII:SHF:Codata:面向对象和函数式编程的逻辑融合
- 批准号:
2245516 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: An Object-Oriented Approach to Assess the Rainfall Evolution of Tropical Cyclones in Varying Moisture Environments
协作研究:一种面向对象的方法来评估不同湿度环境下热带气旋的降雨演变
- 批准号:
2011981 - 财政年份:2020
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: An Object-Oriented Approach to Assess the Rainfall Evolution of Tropical Cyclones in Varying Moisture Environments
协作研究:一种面向对象的方法来评估不同湿度环境下热带气旋的降雨演变
- 批准号:
2012008 - 财政年份:2020
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Aliasing Control in an Object-Oriented Programming Language with Typestate Annotations
使用类型状态注释的面向对象编程语言中的别名控制
- 批准号:
2469547 - 财政年份:2020
- 资助金额:
$ 100万 - 项目类别:
Studentship
Object-oriented programming education support system utilizing learning analytics
利用学习分析的面向对象的编程教育支持系统
- 批准号:
20K03265 - 财政年份:2020
- 资助金额:
$ 100万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: An Object-Oriented Approach to Assess the Rainfall Evolution of Tropical Cyclones in Varying Moisture Environments
协作研究:一种面向对象的方法来评估不同湿度环境下热带气旋的降雨演变
- 批准号:
2011812 - 财政年份:2020
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Interprocedural program analysis for modern object-oriented languages
现代面向对象语言的过程间程序分析
- 批准号:
RGPIN-2014-05645 - 财政年份:2019
- 资助金额:
$ 100万 - 项目类别:
Discovery Grants Program - Individual
Object Oriented Data Analysis for Untargeted Metabolomics
非目标代谢组学的面向对象数据分析
- 批准号:
10010882 - 财政年份:2019
- 资助金额:
$ 100万 - 项目类别:
Automated competency measurement and feedback generation for object-oriented programming
面向对象编程的自动能力测量和反馈生成
- 批准号:
412374068 - 财政年份:2019
- 资助金额:
$ 100万 - 项目类别:
Research Grants














{{item.name}}会员




