CNS Core: Small: Not All Cameras are Created Equal: Systems Support for Highly Adaptive Video Analytics Pipelines
CNS 核心:小型:并非所有摄像机都是一样的:对高度自适应视频分析管道的系统支持
基本信息
- 批准号:2153449
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The ubiquity of video camera deployments, coupled with steady improvements in computer vision algorithms, has given rise to a diverse range of video analytics applications. Use cases include surveillance, traffic scheduling, disaster response, and more. Yet despite their promise, video analytics deployments are far from widespread. A key reason is that video analysis is often prohibitively expensive: video is data-intensive, stressing the network, and analysis typically involves Deep Neural Networks (DNNs) to query video, requiring substantial compute resources. This project aims to design and implement practical video analytics systems that can adapt their execution to most efficiently utilize end-to-end compute and network resources, i.e., across cameras, servers, and the networks between them.The key insight underlying the proposed work is to adaptively place analytics tasks by leveraging frame-transforming techniques that are diverse in terms of resource requirements and accuracy, e.g., lightweight frame differencing versus expensive object detection DNNs. Along these lines, the project involves three synergistic directions. First, it rigorously classifies existing frame transforming techniques, investigating the correlation between their computation costs, potential data reduction, and impact on response accuracy. Second, it develops end-to-end systems that can automatically select the appropriate frame transforming technique to run on a camera with the goal of optimizing for response latency and accuracy given the available resources. Third, it develops techniques to extend adaptive video analytics to emerging camera settings, e.g., multi-camera, steerable, energy-harvesting; these systems rely on the extraction of spatial and temporal relationships between camera feeds to guide resource allocation decisions.The proposed research targets a large slice of the population (given the breadth of video analytics applications), and improves both the accessibility and potential of video analytics deployments. The developed systems enable affordable (but effective) video analytics for organizations of different scale, allowing them to make the most of their available resources. Furthermore, the work motivates novel applications that were previously deemed impractical, e.g., real-time monitoring of rural areas via energy-harvesting cameras. The project also involves outreach efforts to attract students from populations currently under-represented in computer science. Key to these efforts is magnifying the interdisciplinary nature of video analytics pipelines which span systems, networks, machine learning, and computer vision.The software and research artifacts designed as part of this project are released on a public website: http://web.cs.ucla.edu/~ravi/adaptive_video_analytics/. The site is regularly maintained and includes replication instructions and packages. Project data are kept on the site for at least 5 years after publication, with extensions based on public interest.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
摄像机部署的普遍性,加上计算机视觉算法的稳步改进,已经产生了各种各样的视频分析应用。用例包括监控、流量调度、灾难响应等。然而,尽管视频分析的前景看好,但其部署远未普及。一个关键原因是视频分析通常非常昂贵:视频是数据密集型的,给网络带来压力,分析通常涉及深度神经网络(DNN)来查询视频,需要大量的计算资源。该项目旨在设计和实现实用的视频分析系统,这些系统可以调整其执行以最有效地利用端到端计算和网络资源,即,所提出的工作的关键见解是通过利用在资源要求和准确性方面不同的帧转换技术来自适应地放置分析任务,例如,轻量级帧差分与昂贵的对象检测DNN。沿着这些思路,该项目涉及三个协同方向。首先,它严格分类现有的帧转换技术,调查它们的计算成本,潜在的数据减少,响应精度的影响之间的相关性。其次,它开发了端到端系统,可以自动选择适当的帧转换技术在相机上运行,目标是在给定可用资源的情况下优化响应延迟和准确性。第三,它开发了将自适应视频分析扩展到新兴相机设置的技术,例如,多摄像头、可操控、能量采集;这些系统依赖于提取摄像头馈送之间的空间和时间关系来指导资源分配决策。拟议的研究针对大部分人群(考虑到视频分析应用的广度),并提高视频分析部署的可访问性和潜力。开发的系统为不同规模的组织提供了经济实惠(但有效)的视频分析,使他们能够充分利用现有资源。此外,这项工作激发了以前被认为不切实际的新应用,例如,通过能源采集摄像头对农村地区进行实时监控。该项目还涉及外联工作,以吸引目前在计算机科学领域人数不足的学生。这些努力的关键是放大视频分析管道的跨学科性质,这些管道跨越系统,网络,机器学习和计算机视觉。作为该项目的一部分设计的软件和研究工件在公共网站上发布:http://web.cs.ucla.edu/~ravi/adaptive_video_analytics/。该网站定期维护,包括复制说明和软件包。项目数据将在网站上保存至少5年,并根据公众利益进行延期。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Boggart: Towards General-Purpose Acceleration of Retrospective Video Analytics
- DOI:
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Neil Agarwal;R. Netravali
- 通讯作者:Neil Agarwal;R. Netravali
GEMEL: Model Merging for Memory-Efficient, Real-Time Video Analytics at the Edge
- DOI:
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Arthi Padmanabhan;Neil Agarwal;Anand Iyer;Ganesh Ananthanarayanan;Yuanchao Shu;Nikolaos Karianakis;G. Xu;R. Netravali
- 通讯作者:Arthi Padmanabhan;Neil Agarwal;Anand Iyer;Ganesh Ananthanarayanan;Yuanchao Shu;Nikolaos Karianakis;G. Xu;R. Netravali
Privid: Practical, Privacy-Preserving Video Analytics Queries
- DOI:
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Frank Cangialosi;Neil Agarwal;V. Arun;Junchen Jiang;Srinivas Narayana;Anand D. Sarwate;Ravi Netravali
- 通讯作者:Frank Cangialosi;Neil Agarwal;V. Arun;Junchen Jiang;Srinivas Narayana;Anand D. Sarwate;Ravi Netravali
RECL: Responsive Resource-Efficient Continuous Learning for Video Analytics
RECL:视频分析的响应式资源高效持续学习
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Khani, Mehrdad;Ananthanarayanan, Ganesh;Hsieh, Kevin;Jiang, Junchen;Netravali, Ravi;Shu, Yuanchao;Alizadeh, Mohammad;Bahl, Victor
- 通讯作者:Bahl, Victor
Understanding the potential of server-driven edge video analytics
- DOI:10.1145/3508396.3512872
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Qizheng Zhang;Kuntai Du;Neil Agarwal;R. Netravali;Junchen Jiang
- 通讯作者:Qizheng Zhang;Kuntai Du;Neil Agarwal;R. Netravali;Junchen Jiang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ravi Netravali其他文献
Ravi Netravali的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ravi Netravali', 18)}}的其他基金
RINGS: Object-Oriented Video Analytics for Next-Generation Mobile Environments
RINGS:下一代移动环境的面向对象视频分析
- 批准号:
2147909 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CNS Core: Small: Fast or Dynamic Websites? Eliminating the Need to Choose
CNS 核心:小型:快速还是动态网站?
- 批准号:
2101881 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CNS Core: Small: Fast or Dynamic Websites? Eliminating the Need to Choose
CNS 核心:小型:快速还是动态网站?
- 批准号:
2151630 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: A Unified Prefetch Framework for Approximation-Tolerant Interactive Applications
合作研究:CNS Core:Medium:用于近似容忍交互式应用程序的统一预取框架
- 批准号:
2140552 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: A Unified Prefetch Framework for Approximation-Tolerant Interactive Applications
合作研究:CNS Core:Medium:用于近似容忍交互式应用程序的统一预取框架
- 批准号:
2105773 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Adaptive Web Execution: Supporting Billions of Diverse Users by Adapting Execution to Available Resources
职业:自适应 Web 执行:通过使执行适应可用资源来支持数十亿不同的用户
- 批准号:
2152313 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CNS Core: Small: Not All Cameras are Created Equal: Systems Support for Highly Adaptive Video Analytics Pipelines
CNS 核心:小型:并非所有摄像机都是一样的:对高度自适应视频分析管道的系统支持
- 批准号:
2006437 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Adaptive Web Execution: Supporting Billions of Diverse Users by Adapting Execution to Available Resources
职业:自适应 Web 执行:通过使执行适应可用资源来支持数十亿不同的用户
- 批准号:
1943621 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
胆固醇羟化酶CH25H非酶活依赖性促进乙型肝炎病毒蛋白Core及Pre-core降解的分子机制研究
- 批准号:82371765
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
锕系元素5f-in-core的GTH赝势和基组的开发
- 批准号:22303037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于合成致死策略搭建Core-matched前药共组装体克服肿瘤耐药的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:
鼠伤寒沙门氏菌LPS core经由CD209/SphK1促进树突状细胞迁移加重炎症性肠病的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于外泌体精准调控的“核-壳”(core-shell)同步血管化骨组织工程策略的应用与机制探讨
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:
肌营养不良蛋白聚糖Core M3型甘露糖肽的精确制备及功能探索
- 批准号:92053110
- 批准年份:2020
- 资助金额:70.0 万元
- 项目类别:重大研究计划
Core-1-O型聚糖黏蛋白缺陷诱导胃炎发生并介导慢性胃炎向胃癌转化的分子机制研究
- 批准号:81902805
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
原始地球增生晚期的Core-merging大碰撞事件:地核增生、核幔平衡与核幔边界结构的新认识
- 批准号:41973063
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
CORDEX-CORE区域气候模拟与预估研讨会
- 批准号:41981240365
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
RBM38通过协助Pol-ε结合、招募core调控HBV复制
- 批准号:31900138
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CNS Core: Small: Core Scheduling Techniques and Programming Abstractions for Scalable Serverless Edge Computing Engine
CNS Core:小型:可扩展无服务器边缘计算引擎的核心调度技术和编程抽象
- 批准号:
2322919 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CNS Core: Small: Network Wide Sensing by Leveraging Cellular Communication Networks
CNS 核心:小型:利用蜂窝通信网络进行全网络传感
- 批准号:
2343469 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CNS Core: Small: Intelligent Fault Injection to Expose and Reproduce Production-Grade Bugs in Cloud Systems
CNS 核心:小型:智能故障注入以暴露和重现云系统中的生产级错误
- 批准号:
2317698 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CNS Core: Small: Repurposing Smartphones to Minimize Carbon
CNS 核心:小型:重新利用智能手机以最大限度地减少碳排放
- 批准号:
2233894 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CNS Core: Small: Toward Opportunistic, Fast, and Robust In-Cache AI Acceleration at the Edge
CNS 核心:小型:在边缘实现机会主义、快速且稳健的缓存内 AI 加速
- 批准号:
2228028 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CNS Core: Small: Redesigning I/O Across Heterogeneous Systems
CNS 核心:小型:跨异构系统重新设计 I/O
- 批准号:
2231724 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
- 批准号:
2242503 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant