Hydrous Components in Nominally Anhydrous Phases

标称无水相中的含水组分

基本信息

  • 批准号:
    2149559
  • 负责人:
  • 金额:
    $ 39.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Hydrogen exists as a minor component in numerous crystalline substances as molecular water and hydroxide ions, the so-called hydrous components. Minerals with these components include those that make up the Earth and synthetic industrial analogues that are of technological importance. The hydrogen in Earth’s minerals account for the vast majority of our planet’s hydrogen and has a profound effect on the behavior of Earth’s interior. Similarly, hydrous components can significantly modify the material properties of synthetic materials, such as semiconductors. Despite the clear importance of hydrogen in these contexts, there remain two fundamental uncertainties: 1) where does the hydrogen incorporate into crystal structures and 2) at what concentrations hydrogen is present. This work will address both issues through a comprehensive approach of both laboratory experiments and computer simulations. This will include development of analytical techniques for hydrogen detection, detailed spectroscopic studies, and interpretation of experimental data from quantum mechanics calculations. In addition to continuing work on previously studied silicate minerals (the most abundant minerals in the earth), the research will also focus on binary oxide minerals. Binary oxides are not only geologically relevant, but also have extreme relevance in many established and emerging technologies, ranging from solar cells, to lasers, touch screens, pigments, semiconductors, and flat screen displays. Hydrogen impurities have been shown to play a key role in these settings. Thus, this research will not only be important for understanding the inner workings of our planet, but will also be significant for the development of new technologies.It has long been understood that hydrous components (OH- and H2O) in nominally anhydrous minerals (NAMs) are of great importance in earth science. These phases, which include abundant mantle phases such as olivine, garnet, pyroxene and ringwoodite, are likely the largest reservoir for hydrogen in the Earth. The trace hydrogen in NAMs often has outsized effects on a wide range of their material properties, from melting points, to mechanical deformation, thermal and electrical conductivity, color, radiation stability. Despite the clear significance of hydrogen in NAMs, there persist two fundamental issues. First is the quantification of hydrogen concentrations in these phases. Numerous techniques have been attempted or utilized over the last few decades including nuclear profile analysis and SIMS measurements, but the technical challenges related to measuring trace hydrogen concentrations in NAMs have proven difficult to overcome. Second is the identification of specific hydrogen sites in NAMs. Although some defect sites have been identified in specific NAMs such as garnets, there is little recourse for establishing the detailed defect structures in most phases. Our proposed solution to these issues is a holistic approach that considers both established and emergent techniques for measuring trace hydrogen in minerals, and quantum mechanics (density functional theory) calculations. These research components will be linked through infrared spectroscopy of oriented crystals, a technique that has proven fundamental in the study of NAMs. Our work will initially focus on simple oxide minerals such as rutile and stishovite, a group of phases that has typically been underrepresented in research into NAMs, but whose study could greatly benefit the field as a whole, with additional benefits to the development of technological materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在许多结晶物质中,氢作为次要成分以分子水和氢氧化物离子的形式存在,即所谓的水合成分。含有这些成分的矿物包括那些构成地球的矿物和具有技术重要性的合成工业类似物。地球矿物中的氢占地球氢气的绝大部分,并对地球内部的行为产生了深远的影响。同样,含水组分可以显著改变半导体等合成材料的材料特性。尽管氢在这些情况下具有明显的重要性,但仍然存在两个基本的不确定性:1)氢在晶体结构中的位置;2)氢的浓度。这项工作将通过实验室实验和计算机模拟的综合方法来解决这两个问题。这将包括发展氢检测的分析技术,详细的光谱研究,以及解释来自量子力学计算的实验数据。除了继续研究以前研究过的硅酸盐矿物(地球上最丰富的矿物)外,研究还将重点放在二元氧化物矿物上。二元氧化物不仅在地质上相关,而且在许多成熟的和新兴的技术中也具有极端的相关性,从太阳能电池到激光、触摸屏、颜料、半导体和平板显示器。氢杂质已被证明在这些环境中起着关键作用。因此,这项研究不仅对了解地球的内部运作具有重要意义,而且对新技术的发展也具有重要意义。长期以来,人们一直认为名义上无水矿物(NAMS)中的含水组分(OH-和H2O)在地球科学中具有重要意义。这些阶段包括丰富的地幔阶段,如橄榄石、石榴石、辉石和环木石,很可能是地球上最大的氢气库。NAMS中的微量氢往往对其广泛的材料性能产生过大的影响,从熔点到机械变形、导热和导电性、颜色、辐射稳定性。尽管氢在NAMS中具有明确的意义,但仍然存在两个基本问题。首先是对这些阶段的氢浓度进行量化。在过去的几十年里,已经尝试或利用了许多技术,包括核剖面分析和SIMS测量,但事实证明,与测量NAMS中的痕量氢浓度有关的技术挑战很难克服。二是对NAMS中特定氢位的鉴定。虽然已经在特定的NAM中发现了一些缺陷位置,如石榴石,但几乎没有办法在大多数阶段建立详细的缺陷结构。我们提出的这些问题的解决方案是一种整体方法,它同时考虑了测量矿物中痕量氢的现有和新兴技术,以及量子力学(密度泛函理论)计算。这些研究部分将通过定向晶体的红外光谱联系在一起,这是一项已被证明是研究NAMS的基础技术。我们的工作最初将集中在简单的氧化物矿物上,如金红石和辉石,这是一组在对NAMS的研究中通常被低估的相,但其研究可以极大地使整个领域受益,并对技术材料的开发产生额外的好处。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

George Rossman其他文献

George Rossman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('George Rossman', 18)}}的其他基金

An Experimental and Computational Study of the Radiative Thermal Conductivity of Upper Mantle Minerals and Rocks
上地幔矿物和岩石辐射热导率的实验和计算研究
  • 批准号:
    2148727
  • 财政年份:
    2022
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Continuing Grant
Light Element Incorporation in Nominally Anhydrous Minerals
名义无水矿物中的轻元素掺入
  • 批准号:
    1322082
  • 财政年份:
    2014
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Continuing Grant
Effects of Hydrogen on Kinetic Processes in Nominally Anhydrous Minerals
氢对标称无水矿物动力学过程的影响
  • 批准号:
    0947956
  • 财政年份:
    2010
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Continuing Grant
Acquisition of an Electron Microprobe for Geological and Materials Research at Caltech
加州理工学院购买用于地质和材料研究的电子显微探针
  • 批准号:
    0318518
  • 财政年份:
    2004
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Standard Grant
Hydrous Components in the Nominally Anhydrous Minerals
名义无水矿物中的含水成分
  • 批准号:
    0337816
  • 财政年份:
    2004
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Continuing Grant
Hydrous Components in Nominally Anhydrous Crustal Minerals
名义无水地壳矿物中的含水成分
  • 批准号:
    0125767
  • 财政年份:
    2001
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Standard Grant
Hydrous Components in Nominally Anhydrous Minerals
名义无水矿物中的含水成分
  • 批准号:
    9804871
  • 财政年份:
    1998
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Standard Grant
Upgrading of Infrared Spectroscopic Instrumentation at the Mineral Spectroscopy Lab at the California Institute of Technology
加州理工学院矿物光谱实验室红外光谱仪器升级
  • 批准号:
    9725897
  • 财政年份:
    1998
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Standard Grant
Computer Control and Data Processing Instrumentation for an Electron Microprobe, SEM and XRD Laboratory
用于电子显微探针、SEM 和 XRD 实验室的计算机控制和数据处理仪器
  • 批准号:
    9405438
  • 财政年份:
    1994
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Standard Grant
"Water" in Normally Anhydrous Minerals
通常无水矿物中的“水”
  • 批准号:
    9218980
  • 财政年份:
    1993
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
  • 批准号:
    2340171
  • 财政年份:
    2024
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Continuing Grant
Reducing the cost of fuel cell components and pilot production of bipolar plate coatings
降低燃料电池组件成本并试产双极板涂料
  • 批准号:
    10088165
  • 财政年份:
    2024
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Collaborative R&D
CAREER: Connecting eukaryotic electron transfer components to nitrogenase using a bacterial chassis
职业:使用细菌底盘将真核电子传递组件连接到固氮酶
  • 批准号:
    2338085
  • 财政年份:
    2024
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Continuing Grant
Micro-integrated coherent light sources and sensing components on a surface-wave platform
表面波平台上的微集成相干光源和传感组件
  • 批准号:
    24K00918
  • 财政年份:
    2024
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Exploring the contribution of cell wall components and osmotic pressure to mechanical properties that enable root growth
探索细胞壁成分和渗透压对促进根系生长的机械性能的贡献
  • 批准号:
    24K17868
  • 财政年份:
    2024
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Automation and cost reduction of the hardware and software components of a novel indoor sustainable vertical growing solution
新型室内可持续垂直种植解决方案的硬件和软件组件的自动化和成本降低
  • 批准号:
    83007861
  • 财政年份:
    2024
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Innovation Loans
Leaky Dielectric Platform for Integrated Terahertz Components
用于集成太赫兹组件的漏电介质平台
  • 批准号:
    DP240100162
  • 财政年份:
    2024
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Discovery Projects
Automated Testbed for Building Systems Components
建筑系统组件自动化测试台
  • 批准号:
    530641094
  • 财政年份:
    2024
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Major Research Instrumentation
OPUS: Robustness and complexity: how evolution builds precise traits from sloppy components
OPUS:稳健性和复杂性:进化如何从草率的组成部分构建精确的特征
  • 批准号:
    2325755
  • 财政年份:
    2024
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Standard Grant
Hybrid Analytical and Data-Driven Models for Integrated Simulation and Design of Complex High Frequency Multi-Winding Magnetic Components
用于复杂高频多绕组磁性元件集成仿真和设计的混合分析和数据驱动模型
  • 批准号:
    2344664
  • 财政年份:
    2024
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了