Simulation-Based Inference for Differential Privacy

基于模拟的差分隐私推理

基本信息

  • 批准号:
    2150615
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

This research project will deliver tools to obtain accurate and broad statistical conclusions from data that are subject to privacy constraints. Differential Privacy is an increasingly adopted technique to protect data within government and industry, such as in the US 2020 Decennial Census. However, privacy protection comes at a cost in terms of accuracy of the analysis run on these data, sometimes drastically affecting the decisions and conclusions that entail. While employing and training graduate students from diverse backgrounds, this project will use computer-simulation techniques to tackle a wide range of statistical tasks under these privacy settings. The increased accuracy from these new tools will allow for the wider adoption of Differential Privacy and increase the possibility of sharing data with reduced risks of privacy violations. This will guarantee broader access to essential and reliable information for decision-making bodies as well as for researchers in the social sciences and other fields of academic research. Results will be disseminated through a series of publications in journals and conference proceedings in the fields of statistics and computer science, as well as through presentations at national and international scientific conferences and workshops. Open-source software packages will be developed and made available to the broader community.This research project will deliver both theoretical and practical tools for the advancement of statistical approaches in complex parametric settings such as those entailed by the added noise of Differential Privacy mechanisms. Differential Privacy protects the private information of individuals included in the data by introducing calibrated noise (randomness) into the data. The idea behind this mechanism is that even a highly informed attacker/hacker will not be able to detect whether changes in outputs are due to a particular individual's response or are simply due to randomness. However, these noise-addition techniques also introduce additional bias and variance into the analyses made by researchers who will want to use these data for the advancement of knowledge in government, industry, and academia. This project will deliver more accurate analytical techniques by relying on simulation-based statistical methods, such as co-sufficient sampling and indirect inference. While preserving the same level of privacy, this approach will take into account the noise mechanisms used to privatize the data. The tools to be developed will improve estimation and statistical inference on noisy privatized data by correcting bias of estimators and delivering reliable confidence intervals and hypothesis tests for a wide range of statistical methods. The project will establish some of the first links between statistical privacy and simulation-based inference techniques and will expand the field of robust statistics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目将提供工具,从受隐私限制的数据中获得准确和广泛的统计结论。差分隐私是一种越来越多地用于保护政府和行业数据的技术,例如美国2020年十年一次的人口普查。然而,隐私保护是以这些数据的分析准确性为代价的,有时会严重影响所需的决策和结论。在雇用和培训来自不同背景的研究生的同时,该项目将使用计算机模拟技术来处理这些隐私设置下的各种统计任务。这些新工具提高的准确性将允许更广泛地采用差异隐私,并增加共享数据的可能性,同时降低侵犯隐私的风险。这将保证决策机构以及社会科学和其他学术研究领域的研究人员更广泛地获得重要和可靠的信息。将通过在统计和计算机科学领域的期刊和会议记录上发表一系列出版物,以及通过在国家和国际科学会议和讲习班上介绍情况,传播研究结果。将开发开放源码软件包并提供给更广泛的社区,这一研究项目将提供理论和实践工具,以促进复杂参数设置中的统计方法,例如差分隐私机制所带来的噪音。差分隐私通过在数据中引入校准噪声(随机性)来保护数据中包含的个人隐私信息。这种机制背后的想法是,即使是高度知情的攻击者/黑客也无法检测输出的变化是由于特定个体的响应还是仅仅由于随机性。然而,这些噪声添加技术也会在研究人员的分析中引入额外的偏差和方差,这些研究人员希望将这些数据用于政府,工业和学术界的知识进步。该项目将通过依赖基于模拟的统计方法,如共同充分抽样和间接推断,提供更准确的分析技术。 在保持相同隐私水平的同时,这种方法将考虑用于私有化数据的噪声机制。有待开发的工具将通过纠正估计者的偏差和为各种统计方法提供可靠的置信区间和假设检验,改进对嘈杂的私有化数据的估计和统计推断。该项目将在统计隐私和基于模拟的推理技术之间建立一些初步的联系,并将扩大稳健统计领域。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Log-Concave and Multivariate Canonical Noise Distributions for Differential Privacy
  • DOI:
    10.48550/arxiv.2206.04572
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jordan Awan;Jinshuo Dong
  • 通讯作者:
    Jordan Awan;Jinshuo Dong
Privacy-Aware Rejection Sampling
  • DOI:
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jordan Awan;Vinayak A. Rao
  • 通讯作者:
    Jordan Awan;Vinayak A. Rao
Data Augmentation MCMC for Bayesian Inference from Privatized Data
用于从私有化数据进行贝叶斯推理的数据增强 MCMC
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jordan Awan其他文献

Simulation-based, Finite-sample Inference for Privatized Data
针对私有化数据的基于模拟的有限样本推理
  • DOI:
    10.48550/arxiv.2303.05328
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jordan Awan;Zhanyu Wang
  • 通讯作者:
    Zhanyu Wang
Tutte polynomials for regular oriented matroids
正则定向拟阵的 Tutte 多项式
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Jordan Awan;O. Bernardi
  • 通讯作者:
    O. Bernardi
The effect of gender on measures of electroglottographic contact quotient.
性别对电声门接触商测量的影响。
Demicaps in AG(4,3) and Maximal Cap Partitions
  • DOI:
    10.1007/s00373-022-02568-x
  • 发表时间:
    2022-11-27
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Jordan Awan;Claire Frechette;Yumi Li;Elizabeth McMahon
  • 通讯作者:
    Elizabeth McMahon
Differentially Private Inference for Binomial Data
二项式数据的差分隐私推理
  • DOI:
    10.29012/jpc.725
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jordan Awan;A. Slavkovic
  • 通讯作者:
    A. Slavkovic

Jordan Awan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于tag-based单细胞转录组测序解析造血干细胞发育的可变剪接
  • 批准号:
    81900115
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
  • 批准号:
    81771933
  • 批准年份:
    2017
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
Reality-based Interaction用户界面模型和评估方法研究
  • 批准号:
    61170182
  • 批准年份:
    2011
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
  • 批准号:
    30771013
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
差异蛋白质组技术结合Array-based CGH 寻找骨肉瘤分子标志物
  • 批准号:
    30470665
  • 批准年份:
    2004
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目
GaN-based稀磁半导体材料与自旋电子共振隧穿器件的研究
  • 批准号:
    60376005
  • 批准年份:
    2003
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Simulation-based inference for Smions Observatory
斯米恩斯天文台基于模拟的推理
  • 批准号:
    2885648
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Studentship
Simulation-based Inference through Random Features
通过随机特征进行基于模拟的推理
  • 批准号:
    2310834
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Objective and noninvasive diagnosis of middle-ear and conductive pathologies using simulation-based inference and transfer learning applied to clinical data
使用基于模拟的推理和应用于临床数据的迁移学习来客观、无创地诊断中耳和传导性病变
  • 批准号:
    10438246
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
Objective and noninvasive diagnosis of middle-ear and conductive pathologies using simulation-based inference and transfer learning applied to clinical data
使用基于模拟的推理和应用于临床数据的迁移学习来客观、无创地诊断中耳和传导性病变
  • 批准号:
    10599340
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
Simulation-based multiple inference problems: theory and application
基于仿真的多重推理问题:理论与应用
  • 批准号:
    RGPIN-2019-06114
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Discovery Grants Program - Individual
Objective and noninvasive diagnosis of middle-ear and conductive pathologies using simulation-based inference and transfer learning applied to clinical data
使用基于模拟的推理和应用于临床数据的迁移学习来客观、无创地诊断中耳和传导性病变
  • 批准号:
    10759307
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
Simulation of nucleation based on Bayesian inference and surrogate modeling
基于贝叶斯推理和代理建模的成核模拟
  • 批准号:
    22K18875
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Joint analysis of galaxy clustering and weak lensing via simulation-based inference
通过基于模拟的推理对星系团聚和弱透镜效应进行联合分析
  • 批准号:
    ST/V004239/1
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Fellowship
Simulation-based multiple inference problems: theory and application
基于仿真的多重推理问题:理论与应用
  • 批准号:
    RGPIN-2019-06114
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Discovery Grants Program - Individual
Simulation-based multiple inference problems: theory and application
基于仿真的多重推理问题:理论与应用
  • 批准号:
    RGPIN-2019-06114
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了