Identification and Estimation of Dynamic Restricted Latent Class Models for Cognitive Diagnosis
用于认知诊断的动态受限潜在类别模型的识别和估计
基本信息
- 批准号:2150628
- 负责人:
- 金额:$ 31.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project will advance dynamic, cognitive diagnostic assessments for tracking student skill acquisition as an alternative approach to the static classification of student skill mastery. Existing formative assessment frameworks require extensive prior content knowledge and theory concerning the nature of student skill mastery and the process by which skills are joined to determine cognitive performance. This project will provide researchers with new tools for inferring the learning process from dynamic, longitudinal data on student performance and offer a framework for evaluating substantive theory for how students learn. A central concern in the educational sciences is formulating and evaluating interventions. The project will develop accurate methods for researchers to gain a fine-grained understanding as to the effectiveness of learning interventions. The new methods will leverage student responses to longitudinal assessments to offer educators and policymakers with insights regarding the status and timing of student mastery of educational content. The methods also will shed light on the effectiveness of educational interventions with the goal of establishing strategies for formulating personalized learning interventions to accelerate student learning. To achieve these aims, the project will advance fundamental theory in statistics and psychometrics. In addition to broadening methodological theory, the project will strengthen the educational assessment infrastructure. The research to be conducted will create a robust foundation for the development and administration of real-time formative assessments that adapt to the needs of students and provide educators with timely information to inform instructional decisions. Graduate students will be involved in the discovery process, and theoretical developments will be incorporated into the graduate curriculum. Publicly available software will be created to provide researchers and decision makers with cutting-edge tools.This research project will consider statistical problems at the heart of the social, behavioral, and health sciences, and will highlight the interplay among the fields of psychometrics, latent class modeling, longitudinal data analysis, and Bayesian statistics. The project will involve complex statistical modeling and will addresses issues related to computational complexity. New methods and algorithms for dynamic restricted latent class models (D-RLCMs) will be developed. Novel Bayesian methods will be used to deploy D-RLCMs to classify student mastery over time. The longitudinal skill classifications will provide educators and stakeholders with a fine-grained trajectory of student performance and learning. The project will deploy a hidden Markov model (HMM) framework that enables precise information regarding the probability students transition into states with greater content mastery. The mathematical theory of HMMs will be advanced in the project by establishing new identifiability theory to accurately infer student longitudinal skill profiles and learning trajectories. Methods will be developed to provide a powerful evaluation of the role of contextual factors in learning environments, such as student or school characteristics and pedagogical techniques. The methods to be developed will harvest the wealth of longitudinal student response data to provide decision makers and educators with actionable evidence to improve student learning outcomes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目将推进动态的认知诊断评估,以跟踪学生技能习得,作为学生技能掌握的静态分类的替代方法。现有的形成性评估框架需要广泛的先验内容知识和理论,这些知识和理论涉及学生技能掌握的性质以及技能结合决定认知表现的过程。该项目将为研究人员提供新的工具,从学生表现的动态、纵向数据中推断学习过程,并为评估学生如何学习的实质性理论提供框架。教育科学的一个中心问题是制定和评价干预措施。该项目将为研究人员开发准确的方法,以获得对学习干预有效性的细致理解。新方法将利用学生对纵向评估的反应,为教育工作者和政策制定者提供有关学生掌握教育内容的状态和时间的见解。这些方法还将阐明教育干预的有效性,目标是建立制定个性化学习干预的策略,以加速学生的学习。为了实现这些目标,该项目将推进统计学和心理测量学的基础理论。除了拓宽方法理论外,该项目还将加强教育评价基础设施。即将进行的研究将为开发和管理实时形成性评估奠定坚实的基础,以适应学生的需求,并为教育工作者提供及时的信息,以便为教学决策提供信息。研究生将参与发现过程,理论发展将纳入研究生课程。将创建公开可用的软件,为研究人员和决策者提供尖端工具。该研究项目将考虑社会、行为和健康科学的核心统计问题,并将强调心理测量学、潜在类别建模、纵向数据分析和贝叶斯统计等领域之间的相互作用。该项目将涉及复杂的统计建模,并将解决与计算复杂性相关的问题。动态受限潜在类模型(d - rlcm)的新方法和算法将得到发展。新的贝叶斯方法将被用于部署d - rlcm来对学生掌握程度进行分类。纵向技能分类将为教育工作者和利益相关者提供学生表现和学习的细粒度轨迹。该项目将部署一个隐马尔可夫模型(HMM)框架,提供关于学生过渡到更精通内容状态的概率的精确信息。通过建立新的可识别性理论来准确地推断学生的纵向技能概况和学习轨迹,本项目将推进hmm的数学理论。将开发各种方法,对学习环境中的背景因素(如学生或学校的特点和教学技术)的作用进行强有力的评估。待开发的方法将收集大量的纵向学生反馈数据,为决策者和教育工作者提供可操作的证据,以改善学生的学习成果。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identifiability of Hidden Markov Models for Learning Trajectories in Cognitive Diagnosis
- DOI:10.1007/s11336-023-09904-x
- 发表时间:2023-02-16
- 期刊:
- 影响因子:3
- 作者:Liu, Ying;Culpepper, Steven Andrew;Chen, Yuguo
- 通讯作者:Chen, Yuguo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Culpepper其他文献
Steven Culpepper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Culpepper', 18)}}的其他基金
Bayesian Estimation of Restricted Latent Class Models for Ordinal and Nominal Response Data
有序和名义响应数据的受限潜在类模型的贝叶斯估计
- 批准号:
1951057 - 财政年份:2020
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Collaborative Research: Bayesian Estimation of Restricted Latent Class Models
合作研究:受限潜在类模型的贝叶斯估计
- 批准号:
1758631 - 财政年份:2018
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant
相似海外基金
Identification, estimation, and inference of the discount factor in dynamic discrete choice models
动态离散选择模型中折扣因子的识别、估计和推断
- 批准号:
24K04814 - 财政年份:2024
- 资助金额:
$ 31.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification and Estimation of Dynamic Discrete Choice Models with Hyperbolic Discounting
双曲贴现动态离散选择模型的识别和估计
- 批准号:
22J12532 - 财政年份:2022
- 资助金额:
$ 31.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Identification, estimation and inference of nonlinear dynamic causal effects in macroeconometrics
宏观计量经济学中非线性动态因果效应的识别、估计和推断
- 批准号:
RGPIN-2021-02663 - 财政年份:2022
- 资助金额:
$ 31.5万 - 项目类别:
Discovery Grants Program - Individual
Identification, estimation and inference of nonlinear dynamic causal effects in macroeconometrics
宏观计量经济学中非线性动态因果效应的识别、估计和推断
- 批准号:
RGPIN-2021-02663 - 财政年份:2021
- 资助金额:
$ 31.5万 - 项目类别:
Discovery Grants Program - Individual
Identification and Estimation of Dynamic Stochastic General Equilibrium Models: Skewness Matters
动态随机一般均衡模型的识别和估计:偏度很重要
- 批准号:
411754673 - 财政年份:2019
- 资助金额:
$ 31.5万 - 项目类别:
Research Grants
Modeling of dynamic network based on noise information estimation: Identification of errors-in-variables models in closed-loop
基于噪声信息估计的动态网络建模:闭环变量模型误差识别
- 批准号:
16K18127 - 财政年份:2016
- 资助金额:
$ 31.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Estimation of Dynamic Response of CFRP Structures Based on Experimental Impact Force Identification
基于实验冲击力识别的CFRP结构动力响应估计
- 批准号:
26820367 - 财政年份:2014
- 资助金额:
$ 31.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Identification of the dynamic characteristics of Japanese single-family residential buildings and its estimation method
日本独栋住宅动力特性识别及其估算方法
- 批准号:
22560475 - 财政年份:2010
- 资助金额:
$ 31.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification and Estimation of Industry Dynamic Models with Persistent and Hidden State Variables
具有持久和隐藏状态变量的行业动态模型的识别和估计
- 批准号:
0137048 - 财政年份:2002
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant
IDENTIFICATION AND ESTIMATION OF DYNAMIC ECONOMETRIC MODELS
动态经济模型的识别和估计
- 批准号:
7140036 - 财政年份:1971
- 资助金额:
$ 31.5万 - 项目类别: