Collaborative Research: Bayesian Estimation of Restricted Latent Class Models
合作研究:受限潜在类模型的贝叶斯估计
基本信息
- 批准号:1758631
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project will advance statistical methods known as cognitive diagnosis models (CDMs). CDMs are the statistical machinery that link cognitive theory with applications in online learning technology. They serve as a framework for providing fine-grained classification of the skills and attributes needed for success in the classroom and beyond. Robust cognitive theory is central to ensure accurate inferences with CDMs. This project will develop new statistical methods for validating cognitive theory in the context of CDMs. The modern classroom generates a wealth of longitudinal information from computerized student assessments. The innovations from this project will provide a framework for human development that harvests the available information to track skill development and to support teachers' instructional decisions in real time. The new methods will be applicable more broadly to other disciplines, such as the social sciences, neuroscience, medicine, and business, as an approach to gain more detailed and nuanced information about cognitive processes underlying human judgment and decision making. Software developed during the course of the project to implement the developed procedures will be made publicly available.The project will advance statistical and psychometric theory by developing Bayesian methods for estimating the Q matrix for a general class of models. Cognitive theory will be incorporated into CDMs by specifying a Q matrix that catalogues the skills required by each task. The general unavailability of cognitive theory Q matrices for most content areas and research domains poses a barrier to widespread application of CDMs. The project will offer several advances to existing research. The project will develop procedures for estimating Q for the most general restricted latent class model. Bayesian estimation methods will be employed that explicitly enforce identifiability conditions to ensure consistency and accuracy of parameter recovery. Stochastic processes and irreducible transitions will be created to estimate Q when the number of latent attributes is unknown a priori. The project also will consider methods that incorporate expert knowledge in the statistical model to improve estimation of Q and to enhance interpretation of uncovered attributes. Psychometric insights gained from working on this important problem can lead to significant developments in the underlying statistical theory for estimation of cognitive diagnosis model Q matrices and could potentially have an impact on the broad spectrum of applications beyond education and psychology, such as machine learning applications that seek to cluster binary data according to a set of underlying features.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个研究项目将推进被称为认知诊断模型(CDMs)的统计方法。cdm是一种统计机制,将认知理论与在线学习技术的应用联系起来。它们作为一个框架,为课堂内外的成功所需的技能和属性提供细粒度的分类。稳健的认知理论是确保cdm准确推断的核心。该项目将开发新的统计方法来验证cdm背景下的认知理论。现代课堂从计算机化的学生评估中产生大量的纵向信息。该项目的创新将为人类发展提供一个框架,收集可用信息以跟踪技能发展,并实时支持教师的教学决策。这些新方法将更广泛地应用于其他学科,如社会科学、神经科学、医学和商业,作为一种获取有关人类判断和决策背后的认知过程的更详细和细微信息的方法。在项目过程中为实施所制定的程序而开发的软件将向公众提供。该项目将通过开发贝叶斯方法来估计一般类型模型的Q矩阵,从而推进统计和心理测量理论。认知理论将通过指定Q矩阵将每个任务所需的技能分类纳入cdm。认知理论Q矩阵在大多数内容领域和研究领域普遍缺乏,这对cdm的广泛应用造成了障碍。该项目将为现有的研究提供若干进展。该项目将为最一般的受限潜在类模型开发估算Q的程序。将采用贝叶斯估计方法明确地强制可识别条件,以确保参数恢复的一致性和准确性。当潜在属性的数量先验未知时,将创建随机过程和不可约转换来估计Q。该项目还将考虑将专家知识纳入统计模型的方法,以改进对Q的估计,并增强对未发现属性的解释。从研究这一重要问题中获得的心理测量学见解可以导致认知诊断模型Q矩阵估计的基础统计理论的重大发展,并可能对教育和心理学以外的广泛应用产生潜在影响,例如根据一组潜在特征寻求二元数据聚类的机器学习应用。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Estimating the Cognitive Diagnosis $$\varvec{Q}$$ Q Matrix with Expert Knowledge: Application to the Fraction-Subtraction Dataset
用专业知识估计认知诊断 $$varvec{Q}$$ Q 矩阵:在分数减法数据集上的应用
- DOI:10.1007/s11336-018-9643-8
- 发表时间:2019
- 期刊:
- 影响因子:3
- 作者:Culpepper, Steven Andrew
- 通讯作者:Culpepper, Steven Andrew
A Sparse Latent Class Model for Cognitive Diagnosis
- DOI:10.1007/s11336-019-09693-2
- 发表时间:2020-03-01
- 期刊:
- 影响因子:3
- 作者:Chen, Yinyin;Culpepper, Steven;Liang, Feng
- 通讯作者:Liang, Feng
An Exploratory Diagnostic Model for Ordinal Responses with Binary Attributes: Identifiability and Estimation
- DOI:10.1007/s11336-019-09683-4
- 发表时间:2019-12-01
- 期刊:
- 影响因子:3
- 作者:Culpepper, Steven Andrew
- 通讯作者:Culpepper, Steven Andrew
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Culpepper其他文献
Steven Culpepper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Culpepper', 18)}}的其他基金
Identification and Estimation of Dynamic Restricted Latent Class Models for Cognitive Diagnosis
用于认知诊断的动态受限潜在类别模型的识别和估计
- 批准号:
2150628 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Bayesian Estimation of Restricted Latent Class Models for Ordinal and Nominal Response Data
有序和名义响应数据的受限潜在类模型的贝叶斯估计
- 批准号:
1951057 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341238 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341237 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
- 批准号:
2348163 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
- 批准号:
2333326 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
- 批准号:
2333324 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
- 批准号:
2333325 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
- 批准号:
2210282 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
- 批准号:
2215169 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
- 批准号:
2215168 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Advancing Bayesian Thinking in STEM
合作研究:推进 STEM 中的贝叶斯思维
- 批准号:
2215920 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant