RUI: Global Optimization of Chance-Constrained Programming for Reliable Process Design

RUI:机会约束编程的全局优化,实现可靠的流程设计

基本信息

  • 批准号:
    2151497
  • 负责人:
  • 金额:
    $ 9.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Incomplete knowledge of the accuracy of mathematical models used for the optimization-based design of chemical processes can lead to degraded quality of fuels, vaccines, manufactured foods, and other chemical products, potentially giving rise to further economic, safety, health, and environmental effects. Current computer-aided process optimization methods are deficient in handling uncertainties due to the high computational cost of rigorously evaluating the designs of complex, highly interconnected chemical plants, inevitably resulting in conservative, sub-optimal design solutions. Motivated by this challenge to advancing U.S. chemical manufacturing technology, this project will establish entirely new, deterministic global optimization techniques combined with flexible data-driven modeling methods that will make it possible to design high-performance chemical processes under uncertainties without sacrificing safety. The resulting chemical products and processes will meet quality and operational constraints with predictable probability while minimizing the plant and operational costs. The fundamental research to be carried out in this project will build a deeper understanding of how data-driven uncertainty models can be used in optimization to simplify the process of identifying the true optimal solution. This proposal would support the integration of research and educational activities through the addition of new content to process design and chemical engineering laboratory courses, the mentoring of undergraduate researchers, and organizing workshops for K-12 students. This work will educate a new generation of students from traditionally underrepresented groups to solve process design problems using data analytics and global optimization strategies.The objective of this project is to build and test a global optimization framework to solve chance-constrained programs (CCPs) formulated for chemical process design under uncertainties. The proposed research plan will focus on advancing the theory behind single- and two-stage CCP subject to large-scale joint chance constraints affinely dependent on general uncertainties. In the single-stage CCP, Gaussian Mixture Models (GMMs) will be investigated for their effectiveness in describing generic uncertainties. To achieve this objective, the CCP-GMM framework will be reformulated into a bi-convex structure. In the two-stage CCP, a piecewise linear decision rule will be integrated with GMM to facilitate more flexible policy representations. The resulting bi-convex problem then can be solved to the global optimum through a combination of second-order cone relaxations, branch-and-bound methods, reformulation-linearization techniques, and optimality-based interval reductions. A vegetable oil blending experiment will be constructed to validate the proposed optimization algorithms, with an objective of edible oil cost minimization subject to the viscosity, energy, and total fat constraints as uncertainties. The proposed research program has transformative potential in that it seeks to improve the use of available data in the optimization process by embedding the identified GMM into the optimization process. This innovative strategy can bypass the difficulty of integral over chance constraints and enable much improved computational efficiency of global optimization. If proven effective, the proposed global optimization algorithms for CCP can be widely applied to complex design problems in the chemical, oil, fuel, and pharmaceutical industries, to reduce cost, enhance safety, and mitigate environmental impact.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对用于化学工艺优化设计的数学模型的准确性的不完全了解可能导致燃料、疫苗、制成品和其他化学产品的质量下降,从而可能引起进一步的经济、安全、健康和环境影响。目前的计算机辅助过程优化方法在处理不确定性方面存在缺陷,这是由于严格评估复杂的高度互连的化工厂的设计的高计算成本,不可避免地导致保守的次优设计解决方案。受推进美国化学制造技术这一挑战的激励,该项目将建立全新的、确定性的全局优化技术,并结合灵活的数据驱动建模方法,使在不确定性的情况下设计高性能化学工艺成为可能,而不会牺牲安全性。由此产生的化学产品和工艺将以可预测的概率满足质量和操作限制,同时最大限度地降低工厂和运营成本。该项目中进行的基础研究将更深入地了解数据驱动的不确定性模型如何用于优化,以简化识别真正最佳解决方案的过程。该提案将通过在工艺设计和化学工程实验室课程中增加新内容、指导本科研究人员以及为K-12学生组织研讨会来支持研究和教育活动的整合。这项工作将教育新一代的学生,从传统上代表性不足的群体,解决过程设计问题,使用数据分析和全局优化策略。该项目的目标是建立和测试一个全局优化框架,以解决机会约束规划(CCP)制定的化学过程设计下的不确定性。拟议的研究计划将侧重于推进单阶段和两阶段CCP背后的理论,受到大规模联合机会约束,影响依赖于一般的不确定性。在单阶段CCP中,将研究高斯混合模型(GARCH)在描述一般不确定性方面的有效性。为了实现这一目标,CCP-GMM框架将被重新表述为双凸结构。在两阶段CCP中,分段线性决策规则将与GMM集成,以促进更灵活的策略表示。由此产生的双凸问题,然后可以解决的全局最优解,通过二阶锥松弛,分支定界方法,重构线性化技术,和基于最优性的区间减少的组合。植物油调配实验将被构造来验证所提出的优化算法,与食用油成本最小化的目标受到的粘度,能量,和总脂肪的约束作为不确定性。拟议的研究计划具有变革性的潜力,因为它旨在通过将识别的GMM嵌入到优化过程中来改善优化过程中可用数据的使用。该方法克服了随机积分约束的困难,提高了全局优化的计算效率。如果证明是有效的,提出的CCP全局优化算法可以广泛应用于化学,石油,燃料和制药行业的复杂设计问题,以降低成本,提高安全性,并减轻环境影响。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal blending under general uncertainties: A chance-constrained programming approach
  • DOI:
    10.1016/j.compchemeng.2023.108170
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Yang
  • 通讯作者:
    Y. Yang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yu Yang其他文献

A luminescent ratiometric thermometer based on thermally coupled levels of a Dy-MOF
基于 Dy-MOF 热耦合水平的发光比率温度计
  • DOI:
    10.1039/c7tc00921f
  • 发表时间:
    2017-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tifeng Xia;Yuanjing Cui;Yu Yang;Guodong Qian
  • 通讯作者:
    Guodong Qian
Fabrication and Characterization of Seawater Temperature Sensor with Self-Calibration Based on Optical Microfiber Coupler Interferometer
基于光学微光纤耦合干涉仪的自校准海水温度传感器的制作与表征
  • DOI:
    10.3390/app10176018
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Zhou Lingjun;Yu Yang;Cao Liang;Huang Huimin;Tao Yuyu;Zhang Zhenfu;Wang Jianfei;Yang Junbo;Zhang Zhenrong
  • 通讯作者:
    Zhang Zhenrong
Enhanced photothermal conversion performances with ultra-broad plasmon absorption of Au in Au/Sm2O3 composites
Au/Sm2O3 复合材料中 Au 的超宽等离子体吸收增强了光热转换性能
  • DOI:
    10.1111/jace.17133
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Yu Yang;Xu Sai;Gao Yuefeng;Jiang Muhan;Li Xiangping;Zhang Jinsu;Zhang Xizhen;Chen Baojiu
  • 通讯作者:
    Chen Baojiu
Small and flat worlds: A complex network analysis of international trade in crude oil
小而平坦的世界:国际原油贸易的复杂网络分析
  • DOI:
    10.1016/j.energy.2015.09.079
  • 发表时间:
    2015-12
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Yu Yang;Jessie PH Poon;Yi Liu;Sharmistha Bagchi-Sen
  • 通讯作者:
    Sharmistha Bagchi-Sen
Genetic Incorporation of N-epsilon-Formyllysine, a New Histone Post-translational Modification
N(ε)-甲酰赖氨酸的基因整合,一种新的组蛋白翻译后修饰。
  • DOI:
    10.1002/cbic.201500170
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Wang Tianyuan;Zhou Qing;Li Fahui;Yu Yang;Yin Xuebin;Wang Jiangyun
  • 通讯作者:
    Wang Jiangyun

Yu Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yu Yang', 18)}}的其他基金

Collaborative Research: Advancing Fairness for Emerging Infrastructure Systems with High Operational Dynamics
合作研究:促进具有高运营动态的新兴基础设施系统的公平性
  • 批准号:
    2309667
  • 财政年份:
    2023
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: RCBP-RF: CPS: Socially Informed Traffic Signal Control for Improving Near Roadway Air Quality
合作研究:CISE-MSI:RCBP-RF:CPS:用于改善附近道路空气质量的社会知情交通信号控制
  • 批准号:
    2318697
  • 财政年份:
    2023
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Standard Grant
CRII: CPS: Towards Efficient Shared Electric Micromobility: An Interaction-aware Management Framework for Mobile Cyber-Physical Systems
CRII:CPS:迈向高效共享电动微移动:移动网络物理系统的交互感知管理框架
  • 批准号:
    2246080
  • 财政年份:
    2023
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Standard Grant
Collaborative Research: Sustainable management of human organic pollutant exposure (HOPE) at formerly used defense sites in the changing Arctic
合作研究:在不断变化的北极地区以前使用的防御地点对人类有机污染物暴露(HOPE)进行可持续管理
  • 批准号:
    2148056
  • 财政年份:
    2022
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Continuing Grant
Collaborative Research: Identification of Lignin-derived Ligands Associating With Iron
合作研究:鉴定与铁结合的木质素衍生配体
  • 批准号:
    2108270
  • 财政年份:
    2021
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Standard Grant
GOALI: Collaborative research: Biochar-catalyzed microbial reductive degradation of emerging organohalides
目标:合作研究:生物炭催化微生物还原降解新兴有机卤化物
  • 批准号:
    1804209
  • 财政年份:
    2018
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Standard Grant

相似国自然基金

磁层亚暴触发过程的全球(global)MHD-Hall数值模拟
  • 批准号:
    40536030
  • 批准年份:
    2005
  • 资助金额:
    120.0 万元
  • 项目类别:
    重点项目

相似海外基金

Scalable Algorithms for Deterministic Global Optimization With Parallel Architectures
使用并行架构实现确定性全局优化的可扩展算法
  • 批准号:
    2330054
  • 财政年份:
    2024
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Standard Grant
GRASP Conic relaxations: scalable and accurate global optimization beyond polynomials
掌握圆锥松弛:超越多项式的可扩展且准确的全局优化
  • 批准号:
    EP/X032051/1
  • 财政年份:
    2023
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Research Grant
CAREER: Advancing Efficient Global Optimization of Extremely Expensive Functions under Uncertainty using Structure-Exploiting Bayesian Methods
职业:使用结构利用贝叶斯方法在不确定性下推进极其昂贵的函数的高效全局优化
  • 批准号:
    2237616
  • 财政年份:
    2023
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Continuing Grant
NOVEL DECOMPOSITION ALGORITHMS FOR GUARANTEED GLOBAL OPTIMIZATION OF LARGE-SCALE NONCONVEX STOCHASTIC PROGRAMS
确保大规模非凸随机程序全局优化的新颖分解算法
  • 批准号:
    2232588
  • 财政年份:
    2023
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Sampling and Optimization under Global Constraints
合作研究:AF:小型:全局约束下的采样和优化
  • 批准号:
    2309708
  • 财政年份:
    2023
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Sampling and Optimization under Global Constraints
合作研究:AF:小型:全局约束下的采样和优化
  • 批准号:
    2309707
  • 财政年份:
    2023
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Standard Grant
Global optimization of anisotropy in antiferromagnets
反铁磁体各向异性的全局优化
  • 批准号:
    2740295
  • 财政年份:
    2022
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Studentship
Improving global optimization methods for dynamic process models
改进动态过程模型的全局优化方法
  • 批准号:
    RGPIN-2017-05944
  • 财政年份:
    2022
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Modelling and Global Optimization Techniques for the Design and Operation of Microgrids
用于微电网设计和运行的新颖建模和全局优化技术
  • 批准号:
    546941-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Generalization of global topology optimization using dimension reduction technology
使用降维技术的全局拓扑优化的推广
  • 批准号:
    22K03874
  • 财政年份:
    2022
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了