RUI: Global Optimization of Chance-Constrained Programming for Reliable Process Design

RUI:机会约束编程的全局优化,实现可靠的流程设计

基本信息

  • 批准号:
    2151497
  • 负责人:
  • 金额:
    $ 9.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Incomplete knowledge of the accuracy of mathematical models used for the optimization-based design of chemical processes can lead to degraded quality of fuels, vaccines, manufactured foods, and other chemical products, potentially giving rise to further economic, safety, health, and environmental effects. Current computer-aided process optimization methods are deficient in handling uncertainties due to the high computational cost of rigorously evaluating the designs of complex, highly interconnected chemical plants, inevitably resulting in conservative, sub-optimal design solutions. Motivated by this challenge to advancing U.S. chemical manufacturing technology, this project will establish entirely new, deterministic global optimization techniques combined with flexible data-driven modeling methods that will make it possible to design high-performance chemical processes under uncertainties without sacrificing safety. The resulting chemical products and processes will meet quality and operational constraints with predictable probability while minimizing the plant and operational costs. The fundamental research to be carried out in this project will build a deeper understanding of how data-driven uncertainty models can be used in optimization to simplify the process of identifying the true optimal solution. This proposal would support the integration of research and educational activities through the addition of new content to process design and chemical engineering laboratory courses, the mentoring of undergraduate researchers, and organizing workshops for K-12 students. This work will educate a new generation of students from traditionally underrepresented groups to solve process design problems using data analytics and global optimization strategies.The objective of this project is to build and test a global optimization framework to solve chance-constrained programs (CCPs) formulated for chemical process design under uncertainties. The proposed research plan will focus on advancing the theory behind single- and two-stage CCP subject to large-scale joint chance constraints affinely dependent on general uncertainties. In the single-stage CCP, Gaussian Mixture Models (GMMs) will be investigated for their effectiveness in describing generic uncertainties. To achieve this objective, the CCP-GMM framework will be reformulated into a bi-convex structure. In the two-stage CCP, a piecewise linear decision rule will be integrated with GMM to facilitate more flexible policy representations. The resulting bi-convex problem then can be solved to the global optimum through a combination of second-order cone relaxations, branch-and-bound methods, reformulation-linearization techniques, and optimality-based interval reductions. A vegetable oil blending experiment will be constructed to validate the proposed optimization algorithms, with an objective of edible oil cost minimization subject to the viscosity, energy, and total fat constraints as uncertainties. The proposed research program has transformative potential in that it seeks to improve the use of available data in the optimization process by embedding the identified GMM into the optimization process. This innovative strategy can bypass the difficulty of integral over chance constraints and enable much improved computational efficiency of global optimization. If proven effective, the proposed global optimization algorithms for CCP can be widely applied to complex design problems in the chemical, oil, fuel, and pharmaceutical industries, to reduce cost, enhance safety, and mitigate environmental impact.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
不完整的了解用于基于化学过程的基于优化设计的数学模型的准确性可能会导致燃料,疫苗,制造食品和其他化学产品的质量降解,从而有可能带来进一步的经济,安全,健康和环境影响。由于严格评估复杂的,高度相互联系的化学植物的设计的高计算成本,当前的计算机辅助过程优化方法处理不确定性不足,因此不可避免地导致了保守的,最佳的设计解决方案。由于这一挑战促进美国化学制造技术的挑战,该项目将建立全新的,确定性的全球优化技术,再加上灵活的数据驱动建模方法,这将使在不牺牲安全性的情况下设计高性能化学过程是可能的。由此产生的化学产品和工艺将满足质量和运营限制,并以可预测的概率降至最低限制工厂和运营成本。该项目中要进行的基本研究将对如何使用数据驱动的不确定性模型进行更深入的了解,以简化识别真正最佳解决方案的过程。该建议将通过在过程设计和化学工程实验室课程,本科研究人员的指导以及为K-12学生组织研讨会上,来支持研究和教育活动的整合。这项工作将教育来自传统代表性不足的小组的新一代学生,以使用数据分析和全球优化策略来解决过程设计问题。该项目的目标是建立和测试一个全球优化框架,以解决在不认识下为化学过程制定的机会限制的计划(CCPS)。拟议的研究计划将着重于促进单阶段和两阶段CCP背后的理论,但受到大规模关节机会约束,依赖于一般不确定性。在单阶段的CCP中,将研究高斯混合模型(GMM)在描述通用不确定性方面的有效性。为了实现这一目标,CCP-GMM框架将被重新构成双凸结构。在两阶段的CCP中,分段线性决策规则将与GMM集成,以促进更灵活的策略表示。然后,可以通过二阶锥度放松,分支和结合方法,重新构造线性化技术和基于最佳的间隔降低的结合来解决所得的双凸问题。将构建一个植物油混合实验,以验证所提出的优化算法,目标是可食用的油成本最小化,但要以粘度,能量和总脂肪约束为不确定性。提出的研究计划具有变革性的潜力,因为它试图通过将确定的GMM嵌入到优化过程中,以改善优化过程中可用数据的使用。这种创新的策略可以绕过不可或缺的机会限制的困难,并使全球优化的计算效率得到了极大的提高。如果证明有效,则可以广泛地将CCP的全球优化算法应用于化学,石油,燃料和制药行业中的复杂设计问题,以降低成本,提高安全性并减轻环境影响。这奖反映了NSF的立法使命,并认为通过基金会的智力效果和广泛的评估,可以通过评估来进行评估。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal blending under general uncertainties: A chance-constrained programming approach
  • DOI:
    10.1016/j.compchemeng.2023.108170
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Yang
  • 通讯作者:
    Y. Yang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yu Yang其他文献

On the ordinariness of coverings of stable curves
论稳定曲线覆盖的普通性
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harada;M.;Furukawa;R.;Yokobori1;S.;Tajika;E.;and Yamagishi;A.;原田真理子,古川龍太郎,横堀伸一,田近英一,山岸明彦;Eiichi Tajika and Mariko Harada;Yu Yang;Yu Yang
  • 通讯作者:
    Yu Yang
Local p-rank and semi-stable reduction of curves
曲线的局部 p 秩和半稳定缩减
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harada;M.;Furukawa;R.;Yokobori1;S.;Tajika;E.;and Yamagishi;A.;原田真理子,古川龍太郎,横堀伸一,田近英一,山岸明彦;Eiichi Tajika and Mariko Harada;Yu Yang;Yu Yang;Yu Yang;Yu Yang;Yu Yang;Yu Yang;Yu Yang
  • 通讯作者:
    Yu Yang
Dumping by Firms That Produce Core Goods and Incompatible Consumables
生产核心商品和不相容消费品的公司倾销
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kazuharu Kiyono (with T.Ohkawa;M.Okamura;N.Nakanishi);Kazuharu Kiyono (with T.Uchiyama);干 洋;鈴木久美(藪下史郎と共著);鈴木久美;鈴木久美(石井安憲と共著);Kazuharu Kiyono(with Fang Wei);Kazuharu Kiyono;Kazuharu Kiyono(with Fang Wei);Kazuharu Kiyono;Ichiroh Daitoh(with Hyun-Soo Ji);Kazuharu Kiyono(with J.Ishikawa and M.Yomogida);于 洋;Yu Yang;Yasunori Ishii with Chisato Sibayama
  • 通讯作者:
    Yasunori Ishii with Chisato Sibayama
Network Transplanting
网络移植
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Quanshi Zhang;Yu Yang;Y. Wu;Song
  • 通讯作者:
    Song
Glycan expression profile of signet gastric cancer and potential applicability of lectin drug conjugate
印戒胃癌的聚糖表达谱和凝集素药物缀合物的潜在应用
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yoshimsa Akashi;Yu Yang;Osamu Shimomura;Yoshihiro Miyazaki;Tatsuya Oda;et al.
  • 通讯作者:
    et al.

Yu Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yu Yang', 18)}}的其他基金

Collaborative Research: Advancing Fairness for Emerging Infrastructure Systems with High Operational Dynamics
合作研究:促进具有高运营动态的新兴基础设施系统的公平性
  • 批准号:
    2309667
  • 财政年份:
    2023
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: RCBP-RF: CPS: Socially Informed Traffic Signal Control for Improving Near Roadway Air Quality
合作研究:CISE-MSI:RCBP-RF:CPS:用于改善附近道路空气质量的社会知情交通信号控制
  • 批准号:
    2318697
  • 财政年份:
    2023
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Standard Grant
CRII: CPS: Towards Efficient Shared Electric Micromobility: An Interaction-aware Management Framework for Mobile Cyber-Physical Systems
CRII:CPS:迈向高效共享电动微移动:移动网络物理系统的交互感知管理框架
  • 批准号:
    2246080
  • 财政年份:
    2023
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Standard Grant
Collaborative Research: Sustainable management of human organic pollutant exposure (HOPE) at formerly used defense sites in the changing Arctic
合作研究:在不断变化的北极地区以前使用的防御地点对人类有机污染物暴露(HOPE)进行可持续管理
  • 批准号:
    2148056
  • 财政年份:
    2022
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Continuing Grant
Collaborative Research: Identification of Lignin-derived Ligands Associating With Iron
合作研究:鉴定与铁结合的木质素衍生配体
  • 批准号:
    2108270
  • 财政年份:
    2021
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Standard Grant
GOALI: Collaborative research: Biochar-catalyzed microbial reductive degradation of emerging organohalides
目标:合作研究:生物炭催化微生物还原降解新兴有机卤化物
  • 批准号:
    1804209
  • 财政年份:
    2018
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Standard Grant

相似国自然基金

全球湿地甲烷排放的反演优化及对大气甲烷和氧化剂年际变化的影响
  • 批准号:
    42375092
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
全球价值链视角下产业政策与贸易保护政策的协同联动:影响机制与优化研究
  • 批准号:
    72303204
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
面向多运输主体协同的全球多式联运动态时空运作优化研究
  • 批准号:
    72301203
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
全球-地方视角下中国科技创新中心的空间演化机理与布局优化
  • 批准号:
    42301195
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
中国嵌入全球价值链的分工格局、功能升级效应与政策优化研究
  • 批准号:
    72203058
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Scalable Algorithms for Deterministic Global Optimization With Parallel Architectures
使用并行架构实现确定性全局优化的可扩展算法
  • 批准号:
    2330054
  • 财政年份:
    2024
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Standard Grant
GRASP Conic relaxations: scalable and accurate global optimization beyond polynomials
掌握圆锥松弛:超越多项式的可扩展且准确的全局优化
  • 批准号:
    EP/X032051/1
  • 财政年份:
    2023
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Research Grant
CAREER: Advancing Efficient Global Optimization of Extremely Expensive Functions under Uncertainty using Structure-Exploiting Bayesian Methods
职业:使用结构利用贝叶斯方法在不确定性下推进极其昂贵的函数的高效全局优化
  • 批准号:
    2237616
  • 财政年份:
    2023
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Continuing Grant
NOVEL DECOMPOSITION ALGORITHMS FOR GUARANTEED GLOBAL OPTIMIZATION OF LARGE-SCALE NONCONVEX STOCHASTIC PROGRAMS
确保大规模非凸随机程序全局优化的新颖分解算法
  • 批准号:
    2232588
  • 财政年份:
    2023
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Sampling and Optimization under Global Constraints
合作研究:AF:小型:全局约束下的采样和优化
  • 批准号:
    2309708
  • 财政年份:
    2023
  • 资助金额:
    $ 9.62万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了