Categorical Invariants in Non-commutative Geometry
非交换几何中的分类不变量
基本信息
- 批准号:2202365
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Algebraic geometry, which is the geometric study of solutions of polynomial equations, has seen in the last few years major developments. Of these, one of the most striking is the invention of modern curve-counting invariants and the understanding that their computation can be understood in terms of solutions of certain differential equations related to the geometry of so-called mirror spaces. The ideas for doing this originated in physics, through the fields of string theory and mirror symmetry, but are now a major part of modern algebraic geometry. Costello introduced in 2005 a categorical generalization of curve-counting invariants, defined for all genera, called categorical enumerative invariants (CEIs). Despite considerable interest, little is known about them, primarily due to a range of difficulties that arise when trying to compute them. The first calculation of CEIs, for the universal family of elliptic curves, was achieved by the PI in 2017, in joint work with Junwu Tu. This computation led to work by Costello, Tu, and the PI which laid out a new foundation for the definition of CEIs, in a way that is explicitly computable. In addition, the PI will direct undergraduate research projects and train graduate students. A crucial ingredient in the above computations is a choice of a splitting of the non-commutative Hodge filtration. The general theory of CEIs does not specify which particular splitting to use, but in order to obtain geometrically meaningful invariants special choices must be made. In previous work the choices were guided, via mirror symmetry, by the symplectic geometry of the A-model. However, many of the choices appear ad hoc, and a general theory of splittings of the non-commutative Hodge filtration is largely missing. In this project the PI will expand our understanding of the role played by the spltting of the Hodge filtration in the definition of the categorical invariants. The main application will be to compute CEIs not only for geometric spaces, but also replace the actual spaces with algebraic structures called categories of matrix factorizations. This is of independent interest in itself: the invariants of these categories should be closely related to the Fan-Jarvis-Ruan-Witten invariants, but such a relationship is not explicitly known.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
代数几何,这是几何研究的解决方案的多项式方程,已看到在过去几年的主要发展。其中,最引人注目的是现代曲线计数不变量的发明和理解,他们的计算可以理解为某些微分方程的解决方案有关的几何所谓的镜像空间。这样做的想法起源于物理学,通过弦理论和镜像对称领域,但现在是现代代数几何的主要部分。Costello在2005年引入了一个对曲线计数不变量的分类推广,定义为所有属,称为分类枚举不变量(CEI)。尽管有相当大的兴趣,但对它们知之甚少,主要是由于试图计算它们时出现的一系列困难。第一个计算CEI的通用椭圆曲线族是PI在2017年与涂俊武共同完成的。这种计算导致了Costello,Tu和PI的工作,为CEI的定义奠定了新的基础,以显式可计算的方式。此外,PI将指导本科生研究项目和培养研究生。上述计算中的一个关键因素是选择非交换霍奇过滤的分裂。CEI的一般理论并没有指定使用哪种特定的分裂,但是为了获得几何意义的不变量,必须做出特殊的选择。在以前的工作中的选择是指导,通过镜像对称,辛几何的A-模型。然而,许多选择似乎是临时的,并且很大程度上缺乏非可换霍奇过滤分裂的一般理论。在这个项目中,PI将扩大我们对霍奇过滤的分裂在分类不变量的定义中所起作用的理解。主要的应用将是计算CEI不仅几何空间,但也取代了实际的空间与代数结构称为类别的矩阵分解。这本身是独立的利益:这些类别的不变量应该与Fan-Jarvis-Ruan-Witten不变量密切相关,但这种关系并不明确。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrei Caldararu其他文献
Andrei Caldararu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrei Caldararu', 18)}}的其他基金
FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry
FRG:合作研究:代数几何中的更高范畴结构
- 批准号:
2152088 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Higher genus categorical Gromov-Witten invariants
高属分类 Gromov-Witten 不变量
- 批准号:
1811925 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
RTG: Algebraic Geometry, Applied Algebra, and Number Theory at the University of Wisconsin
RTG:威斯康星大学代数几何、应用代数和数论
- 批准号:
1502553 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Applications of derived algebraic geometry to problems in Hodge and Lie theory
派生代数几何在霍奇和李理论问题中的应用
- 批准号:
1200721 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Generalized A-infinity algebras, stability structures, and Hochschild homology
广义 A-无穷代数、稳定性结构和 Hochschild 同调
- 批准号:
0901224 - 财政年份:2009
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Hochschild theory in algebraic geometry
代数几何中的霍克希尔德理论
- 批准号:
0556042 - 财政年份:2006
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似海外基金
Non-semisimple quantum invariants of three and four manifolds
三流形和四流形的非半简单量子不变量
- 批准号:
2304990 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Study on relationship among ring theoretic invariants for non Cohen-Macaulay rings
非Cohen-Macaulay环环理论不变量关系的研究
- 批准号:
20K03550 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Logarithmic and Non-Archimedean Gromov-Witten invariants
对数和非阿基米德 Gromov-Witten 不变量
- 批准号:
2275887 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Studentship
Non-reductive Lie algebras, their symmetric invariants and interactions with representation theory
非还原李代数、它们的对称不变量以及与表示论的相互作用
- 批准号:
404144169 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Heisenberg Professorships
Analytic L2-invariants of non-positively curved spaces
非正弯曲空间的解析 L2 不变量
- 批准号:
338540207 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Priority Programmes
Non-reductive Lie algebras, their symmetric invariants and interactions with representation theory
非还原李代数、它们的对称不变量以及与表示论的相互作用
- 批准号:
330450448 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Heisenberg Fellowships
Arithmetic Invariants and Their Non-Triviality
算术不变量及其非平凡性
- 批准号:
1464106 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Moduli spaces of linear representations and non-abelian torsion invariants
线性表示和非阿贝尔扭转不变量的模空间
- 批准号:
26800032 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Workshop on Spectral Invariants on Non-Compact and Singular Spaces
非紧空间和奇异空间谱不变量研讨会
- 批准号:
1219405 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Non-commutative crepant resolutions and their DT invariants
非交换的 crepant 解析及其 DT 不变量
- 批准号:
126176726 - 财政年份:2009
- 资助金额:
$ 15万 - 项目类别:
Priority Programmes














{{item.name}}会员




