Hochschild theory in algebraic geometry

代数几何中的霍克希尔德理论

基本信息

  • 批准号:
    0556042
  • 负责人:
  • 金额:
    $ 11.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-06-01 至 2009-05-31
  • 项目状态:
    已结题

项目摘要

There are two themes to this project. The first is the study ofHochschild structures that arise naturally in algebraic geometry.Hochschild homology and cohomology are essential invariants in bothalgebra and geometry, and the PI proposes to study them from analgebraic-geometric point of view. The second is the study ofexplicit example of spaces which have the extra structure of {\emgenus one fibration}. These spaces are ubiquitous in classical andmodern algebraic geometry, and the PI expects that by using thetechniques of derived categories new insights can be gained into theirgeometry.There are three projects contained in the present proposal.The first project is concerned with finding explicit formulas for themultiplication in the Hochschild cohomology ring of orbifolds, withapplications to the Ruan conjecture. The second aims at understandingthe abstract Mukai pairing on the Hochschild homology of smooth varieties,and its relationship to the Poincar\'e pairing on differential forms.This would provide a new perspective on the Riemann-Roch theorem.The third project is a study of genus one fibrations withmulti-sections of small degree. It has applications to the study ofstable singularities in string theory, as well as to the understandingof the Torelli problem for Calabi-Yau threefolds.Algebraic geometry, which is the geometric study of solutions ofpolynomial equations, has seen in the last few years majordevelopments, especially in terms of its applications in other fieldsof science. Of particular importance are applications to moderntheoretical physics, in particular in string theory. The presentproject will increase our general understanding of the geometry ofsome of the spaces that are important in algebraic geometry andphysics.
这个项目有两个主题。第一个是在代数几何形状中自然出现的霍奇柴尔德结构的研究。hochschild同源性和同源物是Bertchalgebra和几何学中必不可少的不变性,PI提议从镇痛的视角来研究它们。第二个是空间的解释示例的研究,该示例具有{\ Emgenus One纤维化}的额外结构。 These spaces are ubiquitous in classical andmodern algebraic geometry, and the PI expects that by using thetechniques of derived categories new insights can be gained into theirgeometry.There are three projects contained in the present proposal.The first project is concerned with finding explicit formulas for themultiplication in the Hochschild cohomology ring of orbifolds, withapplications to the Ruan猜想。第二个目的是了解平滑品种的Hochschild同源性及其与Poincar \ e配对的关系的抽象配对。这将为Riemann-Roch定理提供新的观点。第三个项目是对小型属性小部分的竞争研究的研究。它在弦理论中具有稳定的奇异性以及对calabi-yau三倍的托雷利问题的理解,它具有应用于研究。特别重要的是对现代理论物理学的应用,特别是在弦理论中。当前的物体将增加我们对在代数几何和物理中重要的空间几何形状的一般理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrei Caldararu其他文献

Andrei Caldararu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrei Caldararu', 18)}}的其他基金

Categorical Invariants in Non-commutative Geometry
非交换几何中的分类不变量
  • 批准号:
    2202365
  • 财政年份:
    2022
  • 资助金额:
    $ 11.83万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry
FRG:合作研究:代数几何中的更高范畴结构
  • 批准号:
    2152088
  • 财政年份:
    2022
  • 资助金额:
    $ 11.83万
  • 项目类别:
    Continuing Grant
Higher genus categorical Gromov-Witten invariants
高属分类 Gromov-Witten 不变量
  • 批准号:
    1811925
  • 财政年份:
    2018
  • 资助金额:
    $ 11.83万
  • 项目类别:
    Continuing Grant
RTG: Algebraic Geometry, Applied Algebra, and Number Theory at the University of Wisconsin
RTG:威斯康星大学代数几何、应用代数和数论
  • 批准号:
    1502553
  • 财政年份:
    2015
  • 资助金额:
    $ 11.83万
  • 项目类别:
    Continuing Grant
Applications of derived algebraic geometry to problems in Hodge and Lie theory
派生代数几何在霍奇和李理论问题中的应用
  • 批准号:
    1200721
  • 财政年份:
    2012
  • 资助金额:
    $ 11.83万
  • 项目类别:
    Standard Grant
Generalized A-infinity algebras, stability structures, and Hochschild homology
广义 A-无穷代数、稳定性结构和 Hochschild 同调
  • 批准号:
    0901224
  • 财政年份:
    2009
  • 资助金额:
    $ 11.83万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0202567
  • 财政年份:
    2002
  • 资助金额:
    $ 11.83万
  • 项目类别:
    Standard Grant

相似国自然基金

微分分次几何中的同调和Batalin-Vilkovisky量子化
  • 批准号:
    11901221
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
丛倾斜范畴及其在同调代数中的应用
  • 批准号:
    11901341
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Poisson代数的形变与非交换代数的同调理论
  • 批准号:
    11771085
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
Atiyah同调类与Duflo-Kontsevich理论
  • 批准号:
    11471179
  • 批准年份:
    2014
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
套子代数的Hochschild上同调及套的分类
  • 批准号:
    11471199
  • 批准年份:
    2014
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目

相似海外基金

Class numbers and discriminants: algebraic and analytic number theory meet
类数和判别式:代数和解析数论的结合
  • 批准号:
    DP240100186
  • 财政年份:
    2024
  • 资助金额:
    $ 11.83万
  • 项目类别:
    Discovery Projects
Silting theory of Noetherian algebras and subcategories
诺特代数及其子范畴的淤积理论
  • 批准号:
    22KJ2611
  • 财政年份:
    2023
  • 资助金额:
    $ 11.83万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of supersymmetric Picard-Vessiot Theory
超对称皮卡德-维西奥特理论的发展
  • 批准号:
    23K03027
  • 财政年份:
    2023
  • 资助金额:
    $ 11.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Number theory of prehomogeneous vector spaces
预齐次向量空间的数论
  • 批准号:
    23K03052
  • 财政年份:
    2023
  • 资助金额:
    $ 11.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applications of algebraic topology to quantum field theory
代数拓扑在量子场论中的应用
  • 批准号:
    2882485
  • 财政年份:
    2023
  • 资助金额:
    $ 11.83万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了