Quantum Networks Training and Research Alliance in the Southeast

东南部量子网络培训和研究联盟

基本信息

项目摘要

Quantum networks enable more efficient information processing, promising functionality that is faster and more secure than the classical networks that undergird current communication technologies. Research on quantum networks has the potential to contribute to fundamental discoveries in quantum science as well as key applications in cybersecurity, quantum sensors, and quantum computing. However, to realize the promised advantages of a quantum Internet, many fundamental science and engineering challenges must be overcome. Tackling these challenges will require a convergence of expertise from science and engineering disciplines and the development of a well-trained, interdisciplinary quantum networks workforce. The overarching goal of this NSF Research Traineeship (NRT) project is to advance the design and development of components and applications of quantum networks, and to establish the first comprehensive, interdisciplinary quantum information science and engineering (QISE) training program in the Southeast. Representing a collaboration between the University of Georgia and the University of Tennessee at Knoxville, this training program is expected to serve fifty-four masters and doctoral students, including thirty-four funded trainees in science and engineering.This project will carry out quantum networks research in three key areas. The first centers on quantum network building blocks: single photon emitters, qubit realization, quantum photon measurement, quantum information theory, and cybersecurity. The second encompasses quantum devices: networked quantum computing, networked quantum sensors, and materials for quantum network components. The third area considers scientific and engineering applications: space-based entangled photon sources, quantum random number generators, the power grid, quantum resource estimation, and on-chip technology. These three research thrusts will be bridged by three cross-disciplinary research perspectives: experimentation, simulation, and engineering. The training program and workforce development will significantly contribute to fulfilling the pressing need for a skilled QISE workforce in academia, national laboratories, and industry. It will include components uniquely designed to increase the involvement of diverse students in QISE. It will strengthen existing ties that the two collaborating institutions have with historically black colleges and universities, and the Louis Stokes Alliance for Minority Participation (LSAMP) Leadership and Academic Enhancement Program, for robust recruitment, mentoring, and retention of women and minority students from groups underrepresented in the field. In addition, it will engage potential undergraduate recruits with QISE topics via introductory QISE courses that can be taken for credit across institutions. This traineeship model will create an interdisciplinary, workforce-aligned program integrating experimental, simulational, and engineering experiential learning to galvanize a diverse community of graduate students toward careers in QISE.The NSF Research Traineeship (NRT) Program is designed to encourage the development and implementation of bold, new potentially transformative models for STEM graduate education training. The program is dedicated to effective training of STEM graduate students in high priority interdisciplinary or convergent research areas through comprehensive traineeship models that are innovative, evidence-based, and aligned with changing workforce and research needs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子网络能够实现更高效的信息处理,承诺的功能比支撑当前通信技术的经典网络更快、更安全。对量子网络的研究有可能促进量子科学的基础发现,以及在网络安全、量子传感器和量子计算方面的关键应用。然而,要实现量子互联网的承诺优势,必须克服许多基础科学和工程挑战。应对这些挑战将需要融合科学和工程学科的专业知识,并发展一支训练有素、跨学科的量子网络劳动力队伍。NSF研究培训船(NRT)项目的总体目标是推进量子网络组件和应用的设计和开发,并建立东南地区第一个跨学科的综合量子信息科学与工程(QISE)培训计划。作为佐治亚大学和田纳西大学诺克斯维尔分校的合作项目,该培训项目预计将服务于54名硕士和博士生,其中包括34名科学和工程方面的受训学生。该项目将在三个关键领域开展量子网络研究。第一个集中在量子网络构建模块:单光子发射器、量子比特实现、量子光子测量、量子信息理论和网络安全。第二个领域包括量子设备:联网的量子计算、联网的量子传感器和用于量子网络组件的材料。第三个领域考虑科学和工程应用:基于空间的纠缠光子源、量子随机数发生器、电网、量子资源估计和芯片技术。这三个研究推动力将由三个跨学科的研究视角连接起来:实验、模拟和工程。培训计划和劳动力发展将大大有助于满足学术界、国家实验室和工业对熟练QISE劳动力的迫切需求。它将包括独特设计的组件,以增加不同学生在QISE中的参与。它将加强这两个合作机构与历史上一直是黑人的学院和大学以及路易斯·斯托克斯少数族裔参与联盟(LSAMP)领导力和学术提升计划的现有联系,以大力招聘、指导和留住来自该领域代表性不足群体的女性和少数族裔学生。此外,它还将通过QISE入门课程吸引潜在的本科生学习QISE主题,这些课程可以在各院校获得学分。这种培训模式将创建一个跨学科的、以劳动力为导向的计划,整合实验、模拟和工程经验学习,以激励不同的研究生社区在QISE就业。NSF研究培训(NRT)计划旨在鼓励开发和实施STEM研究生教育培训的大胆、新的、潜在的变革性模式。该计划致力于通过创新的、基于证据的、与不断变化的劳动力和研究需求保持一致的综合实习生模式,在高度优先的跨学科或趋同研究领域对STEM研究生进行有效培训。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yohannes Abate其他文献

A wealth of structures for the Ge2H2+ radical cation: comparison of theory and experiment.
Ge2H2 自由基阳离子的丰富结构:理论与实验的比较。
  • DOI:
    10.1039/d3cp06098e
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ethan J Poncelet;H. Mull;Yohannes Abate;GregoryâH. Robinson;G. Douberly;J. Turney;Henry F. Schaefer
  • 通讯作者:
    Henry F. Schaefer
Visible-to-THz near-field nanoscopy
太赫兹可见近场纳米技术
  • DOI:
    10.1038/s41578-024-00761-3
  • 发表时间:
    2025-02-10
  • 期刊:
  • 影响因子:
    86.200
  • 作者:
    Rainer Hillenbrand;Yohannes Abate;Mengkun Liu;Xinzhong Chen;D. N. Basov
  • 通讯作者:
    D. N. Basov

Yohannes Abate的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yohannes Abate', 18)}}的其他基金

Collaborative Research: Nanoscale Quantitative Probing of Phase Transition in Correlated Rare-Earth Nickelates
合作研究:相关稀土镍酸盐相变的纳米级定量探测
  • 批准号:
    1904097
  • 财政年份:
    2019
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
CAREER: Nanoscopy Of Surface States In Two-Dimensional Materials
职业:二维材料表面态的纳米观察
  • 批准号:
    1826677
  • 财政年份:
    2017
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
CAREER: Nanoscopy Of Surface States In Two-Dimensional Materials
职业:二维材料表面态的纳米观察
  • 批准号:
    1553251
  • 财政年份:
    2016
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant

相似国自然基金

军民两用即兴网(Ad Hoc Networks)的研究
  • 批准号:
    60372093
  • 批准年份:
    2003
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 150万
  • 项目类别:
    Research Grant
Integrated Networks of Scholars in Global Health Research Training (INSIGHT) ODP supplement
全球卫生研究培训综合学者网络 (INSIGHT) ODP 补充
  • 批准号:
    10892423
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    2311500
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
GEOPAths: Informal Networks Vocational Experiences and Research Training in Marine Science (GP-IN:VERT)
GEOPAths:海洋科学非正式网络职业经验和研究培训 (GP-IN:VERT)
  • 批准号:
    2325316
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
A social diffusion fatal overdose prevention intervention: Assessing the effectiveness of people who use opioids as peer educators in training using & non-using networks on overdose & stigma reduction
社会扩散致命过量预防干预措施:评估使用阿片类药物的人作为同伴教育者在培训中的有效性
  • 批准号:
    10716356
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
SHF: Medium: More Reliable Image Networks through Scene-based Specification, Neuro-symbolic Training, and Systematic Specification-driven Testing
SHF:中:通过基于场景的规范、神经符号训练和系统规范驱动测试实现更可靠的图像网络
  • 批准号:
    2312487
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
eXplainable Metric Development on Temporally Evolutional Training of Deep Neural Networks
深度神经网络时间演化训练的可解释度量开发
  • 批准号:
    572654-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 150万
  • 项目类别:
    University Undergraduate Student Research Awards
Integrated Networks of Scholars in Global Health Research Training (INSIGHT)
全球健康研究培训学者综合网络(INSIGHT)
  • 批准号:
    10589859
  • 财政年份:
    2022
  • 资助金额:
    $ 150万
  • 项目类别:
Training Unstructured Sparse Neural Networks
训练非结构化稀疏神经网络
  • 批准号:
    DGECR-2022-00358
  • 财政年份:
    2022
  • 资助金额:
    $ 150万
  • 项目类别:
    Discovery Launch Supplement
Training Unstructured Sparse Neural Networks
训练非结构化稀疏神经网络
  • 批准号:
    DGDND-2022-03120
  • 财政年份:
    2022
  • 资助金额:
    $ 150万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了