FRG: Collaborative Research: Complex Lagrangians, Integrable Systems, and Quantization

FRG:协作研究:复杂拉格朗日量、可积系统和量化

基本信息

  • 批准号:
    2152257
  • 负责人:
  • 金额:
    $ 27.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-15 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Mirror symmetry was discovered over three decades ago in theoretical physics. Since then, it has been a deep mystery appearing in many frontiers of mathematics. In general, it appears to be a hidden relation between symplectic geometry, which is the natural framework for describing classical mechanics, and complex algebraic geometry. More recent discoveries link it with several other areas of mathematics and physics. Still, as of today, there is no systematic understanding of mirror symmetry. The main goal of this focused research group is to establish a universal tool to study mirror symmetry and related geometric questions arising in modern frontiers of geometry and topology. In particular, the project aims at constructing a large class of concrete models that would demonstrate all aspects of mirror symmetry. The investigators bring expertise from different areas of mathematics and will use a variety of techniques. They will also organize workshops, summer schools, and conferences, aimed at training early career researchers in this area, disseminating recent results and facilitating further advances.In the original context, mirror symmetry relates counting problems in one space with complex differential equations on its mirror symmetric space. As understanding has evolved, mirror symmetry has been identified as the Laplace transform in certain cases, which provides an effective mechanism of computing quantum invariants of a space from the complex geometry of its mirror. In general, it is a higher categorical relation between symplectic geometry and complex algebraic geometry. In a gauge theoretic context, mirror symmetry appears in the form of the Langlands duality among algebraic groups. More recent discoveries link it with quantum knot invariants. The main goal of the project is to establish complex Lagrangian geometry as a universal tool to study geometric questions and quantization arising in modern frontiers of geometry and topology and to construct models in which we can see all aspects of mirror symmetry, including the real symplectic-complex algebraic duality, the Langlands duality, the Laplace transform, and a relation to three-manifold invariants. In Lagrange's formulation many non-linear problems can be solved via integrable systems, an approach which is widely applicable, extending far beyond its classical origins to high-energy particle physics and string theory. This project aims to advance understanding of the complex integrable systems that arise in such situations, together with their quantum mechanical counterparts, by considering concrete models constructed on Hitchin integrable systems. The work will employ a generalization of the Laplace transform known as topological recursion that is expected to provide a conjectural new mechanism for holomorphic quantization of these spaces and shed new light on mirror symmetry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
镜面对称是三十多年前在理论物理学中发现的。从那时起,在数学的许多前沿领域,这一直是一个深层次的谜团。一般说来,它似乎是辛几何和复杂代数几何之间的隐藏关系,辛几何是描述经典力学的自然框架。更新的发现将它与数学和物理的其他几个领域联系起来。尽管如此,到今天为止,对于镜面对称还没有系统的理解。这个重点研究小组的主要目标是建立一个通用工具来研究现代几何和拓扑学前沿中出现的镜像对称和相关的几何问题。特别是,该项目的目标是构建一大类混凝土模型,以展示镜像对称的所有方面。研究人员带来了来自不同数学领域的专业知识,并将使用各种技术。他们还将组织研讨会、暑期班和会议,旨在培训这一领域的早期职业研究人员,传播最新成果并促进进一步发展。在最初的背景下,镜像对称将一个空间中的计数问题与其镜像对称空间上的复微分方程联系起来。随着认识的发展,镜像对称性在某些情况下被认为是拉普拉斯变换,它提供了一种有效的机制,可以根据空间镜像的复杂几何来计算空间的量子不变量。一般说来,它是辛几何和复代数几何之间的一种较高的范畴关系。在规范理论的背景下,镜像对称以代数群之间的朗兰兹对偶的形式出现。最近的发现将它与量子结不变量联系在一起。该项目的主要目标是建立复拉格朗日几何作为研究现代几何和拓扑前沿中出现的几何问题和量子化的通用工具,并建立模型,在其中我们可以看到镜像对称的所有方面,包括实辛-复代数对偶、朗兰兹对偶、拉普拉斯变换以及与三维流形不变量的关系。在拉格朗日的公式中,许多非线性问题可以通过可积系统来解决,这种方法广泛适用,远远超出了其经典起源,扩展到高能粒子物理和弦理论。这个项目旨在通过考虑建立在希钦可积系统上的具体模型来促进对这种情况下出现的复杂可积系统的理解,以及它们的量子力学对应物。这项工作将采用被称为拓扑递归的拉普拉斯变换的推广,有望为这些空间的全纯量子化提供一种猜想的新机制,并揭示镜像对称的新曙光。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Motohico Mulase其他文献

Mirror symmetry for orbifold Hurwitz numbers
环折赫维茨数的镜像对称性
  • DOI:
    10.4310/jdg/1406552276
  • 发表时间:
    2013-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Vincent Bouchard;Daniel Hern;ez Serrano;刘晓军;Motohico Mulase
  • 通讯作者:
    Motohico Mulase
Duality of Orthogonal and Symplectic Matrix Integrals and Quaternionic Feynman Graphs
  • DOI:
    10.1007/s00220-003-0918-1
  • 发表时间:
    2003-08-19
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Motohico Mulase;Andrew Waldron
  • 通讯作者:
    Andrew Waldron

Motohico Mulase的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Motohico Mulase', 18)}}的其他基金

Travel support grant for the program on "Interactions between topological recursion, modularity, quantum invariants and low-dimensional topology"
为“拓扑递归、模块化、量子不变量和低维拓扑之间的相互作用”项目提供差旅补助
  • 批准号:
    1642515
  • 财政年份:
    2016
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant
Topological Recursion and Its Influence in Analysis, Geometry, and Topology
拓扑递归及其对分析、几何和拓扑的影响
  • 批准号:
    1619760
  • 财政年份:
    2016
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant
The B-model topological recursion, holonomic systems, and the integrability
B 模型拓扑递归、完整系统和可积性
  • 批准号:
    1309298
  • 财政年份:
    2013
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant
Topological recursion, the Laplace transform, and integrable systems
拓扑递归、拉普拉斯变换和可积系统
  • 批准号:
    1104734
  • 财政年份:
    2011
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant
New Recursion Formulae and Integrability for Calabi-Yau Spaces
Calabi-Yau 空间的新递归公式和可积性
  • 批准号:
    1104751
  • 财政年份:
    2011
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant
Algebra and Topology in Interaction; Davis, CA; September 2009
交互中的代数和拓扑;
  • 批准号:
    0905981
  • 财政年份:
    2009
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant
Integrable systems and Gromov-Witten theory of non-orientable surfaces
可积系统和不可定向表面的 Gromov-Witten 理论
  • 批准号:
    0406077
  • 财政年份:
    2004
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant
Infinite-Dimensional Integrable Systems and Moduli Spaces of Riemann Surfaces
无限维可积系统和黎曼曲面的模空间
  • 批准号:
    9971371
  • 财政年份:
    1999
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometry and Analysis of Integrable Systens
数学科学:可积系统的几何与分析
  • 批准号:
    9404111
  • 财政年份:
    1994
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: "Algebraic Geometry of Nonlinear Integrable Systems"
数学科学:《非线性可积系统的代数几何》
  • 批准号:
    9103239
  • 财政年份:
    1991
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了