New Recursion Formulae and Integrability for Calabi-Yau Spaces
Calabi-Yau 空间的新递归公式和可积性
基本信息
- 批准号:1104751
- 负责人:
- 金额:$ 1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The organizing committee, consisting of Vincent Bouchard (University of Alberta), Tom Coates (Imperial College, London), Emma Previato (Boston University), Jian Zhou (Tsinghua University, Beijing), and Motohico Mulase (University of California, Davis) serving as chair, will organize a 5-day workshop titled "New Recursion Formulae and Integrablity for Calabi-Yau Spaces" at the Banff International Research Station during the week of October 16-21, 2011 (http://www.birs.ca/events/2011/5-day-workshops/11w5114). The planned workshop has a clear set of focused goals, and is unique among conferences in related subjects. The main objective is to establish a topological and geometric foundation of a newly discovered topological recursion formula of 2007 by physicists Eynard and Orantin in their work on random matrices, and its Gromov-Witten theoretic realization due to string theorists Marino and Bouchard-Klemm-Marino-Pasquetti.One of the major problems in this area is the Remodeling Conjecture due to them. It states that both open and closed Gromov-Witten invariants of an arbitrary toric Calabi-Yau 3-fold are, quite miraculously, calculated by the Eynard-Orantin topological recursion based on the complex analysis of the mirror curve. A good part of the workshop will be devoted to attacking this unsolved conjecture. Another emphasis of the workshop is placed on discovering yet unknown relation between the generating function of Gromov-Witten invariants of Calabi-Yau spaces and integrable nonlinear partial differential equations.The subject matter of the planned Workshop, which is the first full-scale international workshop specifically devoted to the topics mentioned above, does not fit in a single discipline of mathematics. An important aspect of the Workshop is its function of cross fertilization of different areas of mathematics and theoretical physics. The origin of the main topic is in the soil of statistical study of random matrices. It's geometric significance was discovered by string theorists. It's mathematical nature apparently lies in topology. The theory itself covers a large area of mathematics. So far rigorously established examples of the theory range from hyperbolic geometry to algebraic geometry and to combinatorics of topological graph theory. The mathematical apparatus of these rigorous theories is the Laplace transform and classical complex analysis. Any new understanding of the proposed topics is expected to enhance our current knowledge of mirror symmetry, Gromov-Witten theory, and certain combinatorial problems. The BIRS Workshop plans to bring a wide variety of researchers, to nurture international and interdisciplinary collaborations among young participants, and to generate a larger momentum in the discipline. Since the key players of the subjects are postdoctoral researchers and faculty members in their early careers, the Workshop is expected draw the attention of many graduate students and postdoctoral scholars.
组织委员会,由文森特·布沙尔(阿尔伯塔大学),汤姆科茨(帝国理工学院,伦敦),艾玛·普雷维亚托(波士顿大学),Jian Zhou(清华大学,北京),和Motohico Mulase(加州大学戴维斯分校)担任主席,将组织为期5天的研讨会,题为“新的递归公式和Calabi-Yau空间的可积性”2011年10月16日至21日的一周期间在班夫国际研究站(http://www.birs.ca/events/2011/5-day-workshops/11w5114)。计划中的讲习班有一套明确的重点目标,在相关主题的会议中是独一无二的。主要目的是为物理学家Eynard和Orantin在2007年关于随机矩阵的工作中新发现的拓扑递归公式以及弦理论家Marino和Bouchard-Klemm-Marino-Pasquetti的Gromov-Witten理论实现建立拓扑和几何基础,这一领域的主要问题之一是由他们提出的重塑猜想。它指出,开放和封闭的Gromov-Witten不变量的任意环面Calabi-Yau 3倍,相当神奇地,计算的Eynard-Orantin拓扑递归的基础上复分析的镜像曲线。研讨会的很大一部分将致力于解决这个悬而未决的猜想。研讨会的另一个重点是发现Calabi-Yau空间的Gromov-Witten不变量的生成函数与可积非线性偏微分方程之间的未知关系。计划中的研讨会是第一个专门致力于上述主题的全面国际研讨会,其主题不适合于单一的数学学科。讲习班的一个重要方面是它在数学和理论物理的不同领域的交叉施肥的功能。主要课题的起源是在随机矩阵统计研究的土壤中。它的几何意义是由弦理论家发现的。它的数学本质显然在于拓扑学。这个理论本身涵盖了一个很大的数学领域。到目前为止,严格建立的例子,理论范围从双曲几何代数几何和组合的拓扑图论。这些严格理论的数学工具是拉普拉斯变换和经典复分析。任何新的理解所提出的主题,预计将提高我们目前的知识镜像对称,Gromov-Witten理论,和某些组合问题。BIRS研讨会计划带来各种各样的研究人员,培养年轻参与者之间的国际和跨学科合作,并在该学科中产生更大的动力。由于该主题的主要参与者是博士后研究人员和教师在他们的早期职业生涯,讲习班预计将吸引许多研究生和博士后学者的注意。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Motohico Mulase其他文献
Mirror symmetry for orbifold Hurwitz numbers
环折赫维茨数的镜像对称性
- DOI:
10.4310/jdg/1406552276 - 发表时间:
2013-01 - 期刊:
- 影响因子:2.5
- 作者:
Vincent Bouchard;Daniel Hern;ez Serrano;刘晓军;Motohico Mulase - 通讯作者:
Motohico Mulase
Duality of Orthogonal and Symplectic Matrix Integrals and Quaternionic Feynman Graphs
- DOI:
10.1007/s00220-003-0918-1 - 发表时间:
2003-08-19 - 期刊:
- 影响因子:2.600
- 作者:
Motohico Mulase;Andrew Waldron - 通讯作者:
Andrew Waldron
Motohico Mulase的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Motohico Mulase', 18)}}的其他基金
FRG: Collaborative Research: Complex Lagrangians, Integrable Systems, and Quantization
FRG:协作研究:复杂拉格朗日量、可积系统和量化
- 批准号:
2152257 - 财政年份:2022
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Travel support grant for the program on "Interactions between topological recursion, modularity, quantum invariants and low-dimensional topology"
为“拓扑递归、模块化、量子不变量和低维拓扑之间的相互作用”项目提供差旅补助
- 批准号:
1642515 - 财政年份:2016
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Topological Recursion and Its Influence in Analysis, Geometry, and Topology
拓扑递归及其对分析、几何和拓扑的影响
- 批准号:
1619760 - 财政年份:2016
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
The B-model topological recursion, holonomic systems, and the integrability
B 模型拓扑递归、完整系统和可积性
- 批准号:
1309298 - 财政年份:2013
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Topological recursion, the Laplace transform, and integrable systems
拓扑递归、拉普拉斯变换和可积系统
- 批准号:
1104734 - 财政年份:2011
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Algebra and Topology in Interaction; Davis, CA; September 2009
交互中的代数和拓扑;
- 批准号:
0905981 - 财政年份:2009
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Integrable systems and Gromov-Witten theory of non-orientable surfaces
可积系统和不可定向表面的 Gromov-Witten 理论
- 批准号:
0406077 - 财政年份:2004
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Infinite-Dimensional Integrable Systems and Moduli Spaces of Riemann Surfaces
无限维可积系统和黎曼曲面的模空间
- 批准号:
9971371 - 财政年份:1999
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometry and Analysis of Integrable Systens
数学科学:可积系统的几何与分析
- 批准号:
9404111 - 财政年份:1994
- 资助金额:
$ 1万 - 项目类别:
Continuing Grant
Mathematical Sciences: "Algebraic Geometry of Nonlinear Integrable Systems"
数学科学:《非线性可积系统的代数几何》
- 批准号:
9103239 - 财政年份:1991
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
相似海外基金
Refinement and q-deformation of topological recursion and their applications
拓扑递归的细化和q变形及其应用
- 批准号:
23K12968 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERI: Representations of Complex Engineering Systems via Technology Recursion and Renormalization Group
ERI:通过技术递归和重整化群表示复杂工程系统
- 批准号:
2301627 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Knot invariants and topological recursion
结不变量和拓扑递归
- 批准号:
573166-2022 - 财政年份:2022
- 资助金额:
$ 1万 - 项目类别:
University Undergraduate Student Research Awards
Topological Recursion
拓扑递归
- 批准号:
563261-2021 - 财政年份:2021
- 资助金额:
$ 1万 - 项目类别:
University Undergraduate Student Research Awards
Extending the Topological Recursion and Quantum Curve Connection
扩展拓扑递归和量子曲线连接
- 批准号:
565120-2021 - 财政年份:2021
- 资助金额:
$ 1万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Topological recursion for spectral curves with simple poles
简单极点谱曲线的拓扑递归
- 批准号:
563232-2021 - 财政年份:2021
- 资助金额:
$ 1万 - 项目类别:
University Undergraduate Student Research Awards
Unitarity and Recursion for Multi-loop Yang-Mills Amplitudes
多环Yang-Mills振幅的幺正性和递推
- 批准号:
2437210 - 财政年份:2020
- 资助金额:
$ 1万 - 项目类别:
Studentship
Studies on exact WKB analysis, topological recursion and Painleve equation
精确WKB分析、拓扑递归和Painleve方程的研究
- 批准号:
20K14323 - 财政年份:2020
- 资助金额:
$ 1万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
SHF: Small: A Composable, Sound Optimization Framework for Loops and Recursion
SHF:小型:用于循环和递归的可组合、完善的优化框架
- 批准号:
1908504 - 财政年份:2019
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Congruence constraint for symmetry of topological recursion
拓扑递归对称性的同余约束
- 批准号:
540916-2019 - 财政年份:2019
- 资助金额:
$ 1万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




