Infinite-Dimensional Integrable Systems and Moduli Spaces of Riemann Surfaces

无限维可积系统和黎曼曲面的模空间

基本信息

  • 批准号:
    9971371
  • 负责人:
  • 金额:
    $ 4.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-08-01 至 2003-07-31
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS-9971371Principal Investigator: Motohico MulaseThe proposed research is directed to problems in moduli theory ofRiemann surfaces, algebraic curves defined over the field ofalgebraic numbers, geometry of Hermitian matrix integrals, andintegrable nonlinear partial differential equations. The goalsare (1) To give an explicit combinatorial description ofinfinitesimal deformations of a compact Riemann surface in termsof deformations of graphs on the topological model of thesurface. This will establish a canonical diffeomorphism betweenthe differentiable orbifold structure of the moduli space ofpointed Riemann surfaces that is obtained by the Strebel theoryand the algebro-geometric construction over the field of complexnumbers. (2) To find an algebraic and combinatorial descriptionof the relation between ribbon graphs and Riemann surfaces. It isproposed to study an algebro-geometric counterpart of a ribbongraph with complex edge length. This study is expected to lead toa discovery of algebraic description of the relation betweenribbon graphs and Riemann surfaces. (3) To establish a theory oftranscendental solutions of the KP equations. A class of matrixintegrals give totally new solutions of the KP equations whichare not obtained by the generalized higher-rank Kricheverconstruction. These matrix integrals include generating functionsof the orbifold Euler characteristics of the moduli spaces ofpointed Riemann surfaces.The motion of any string-like object in space-time leads to aRiemann surface as it sweeps out some region. The DNA strands inour body, for example, come from our ancestors. We can imagine aDNA loop, that was created a long time ago, has been traveling intime and now stored in our cell. The whole history of thisparticular DNA is described by a Riemann surface. The time sliceof the surface is the DNA at this particular time. We do not knowthe exact past of our genes. But we can consider the collectionof all possible scenarios that would end up with the currentstructure of our DNA. This collection is the moduli space ofRiemann surfaces. Deeper analysis of the collection of allpossible past of our genes through studying the moduli spaces isexpected to lead us to a better understanding of molecularevolution of DNA. Because of its connections to string theory inhigh energy physics and potential applications to molecularevolution of DNA, graduate and undergraduate students show stronginterests in this research, which interweaves algebra, geometryand analysis.
摘要奖:DMS-9971371主要研究员:Motohico Mulas建议的研究针对Riemann曲面的模理论、代数数域上定义的代数曲线、厄米矩阵积分的几何以及可积非线性偏微分方程等问题。其目的是(1)用紧致黎曼曲面的拓扑模型上的图的变形给出紧致黎曼曲面的有限小变形的显式组合描述。这将在由Strebel理论得到的尖点Riemann曲面模空间的可微或双模结构与复数域上的代数几何结构之间建立典型的微分同态。(2)寻找带状图与黎曼曲面之间关系的代数和组合刻画。本文提出研究复数边长带状图的代数几何对应关系。这项研究有望导致发现带状图和黎曼曲面之间关系的代数描述。(3)建立了KP方程的超越解理论。一类矩阵积分给出了用广义高阶Krichever构造不能得到的KP方程的全新解。这些矩阵积分包含了尖端黎曼曲面的模空间的欧拉特征的母函数,任何弦状物体在时空中的运动都会在扫出某个区域时产生黎曼曲面。例如,我们体内的DNA链来自我们的祖先。我们可以想象一个很久以前创建的DNA环,它已经在时间中旅行,现在存储在我们的细胞中。这种特殊的DNA的整个历史由一个黎曼曲面描述。表面的时间片就是这个特定时刻的DNA。我们不知道我们基因的确切过去。但我们可以考虑所有可能的情景的集合,这些情景最终会导致我们DNA的当前结构。这个集合是黎曼曲面的模空间。通过研究模数空间,更深入地分析我们过去所有可能的基因集合,有望使我们更好地理解DNA的分子进化。由于它与高能物理中的弦理论的联系,以及对DNA分子演化的潜在应用,研究生和本科生对这项交织着代数、几何和分析的研究表现出了浓厚的兴趣。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Motohico Mulase其他文献

Mirror symmetry for orbifold Hurwitz numbers
环折赫维茨数的镜像对称性
  • DOI:
    10.4310/jdg/1406552276
  • 发表时间:
    2013-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Vincent Bouchard;Daniel Hern;ez Serrano;刘晓军;Motohico Mulase
  • 通讯作者:
    Motohico Mulase
Duality of Orthogonal and Symplectic Matrix Integrals and Quaternionic Feynman Graphs
  • DOI:
    10.1007/s00220-003-0918-1
  • 发表时间:
    2003-08-19
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Motohico Mulase;Andrew Waldron
  • 通讯作者:
    Andrew Waldron

Motohico Mulase的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Motohico Mulase', 18)}}的其他基金

FRG: Collaborative Research: Complex Lagrangians, Integrable Systems, and Quantization
FRG:协作研究:复杂拉格朗日量、可积系统和量化
  • 批准号:
    2152257
  • 财政年份:
    2022
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Standard Grant
Travel support grant for the program on "Interactions between topological recursion, modularity, quantum invariants and low-dimensional topology"
为“拓扑递归、模块化、量子不变量和低维拓扑之间的相互作用”项目提供差旅补助
  • 批准号:
    1642515
  • 财政年份:
    2016
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Standard Grant
Topological Recursion and Its Influence in Analysis, Geometry, and Topology
拓扑递归及其对分析、几何和拓扑的影响
  • 批准号:
    1619760
  • 财政年份:
    2016
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Standard Grant
The B-model topological recursion, holonomic systems, and the integrability
B 模型拓扑递归、完整系统和可积性
  • 批准号:
    1309298
  • 财政年份:
    2013
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Standard Grant
Topological recursion, the Laplace transform, and integrable systems
拓扑递归、拉普拉斯变换和可积系统
  • 批准号:
    1104734
  • 财政年份:
    2011
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Standard Grant
New Recursion Formulae and Integrability for Calabi-Yau Spaces
Calabi-Yau 空间的新递归公式和可积性
  • 批准号:
    1104751
  • 财政年份:
    2011
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Standard Grant
Algebra and Topology in Interaction; Davis, CA; September 2009
交互中的代数和拓扑;
  • 批准号:
    0905981
  • 财政年份:
    2009
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Standard Grant
Integrable systems and Gromov-Witten theory of non-orientable surfaces
可积系统和不可定向表面的 Gromov-Witten 理论
  • 批准号:
    0406077
  • 财政年份:
    2004
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometry and Analysis of Integrable Systens
数学科学:可积系统的几何与分析
  • 批准号:
    9404111
  • 财政年份:
    1994
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: "Algebraic Geometry of Nonlinear Integrable Systems"
数学科学:《非线性可积系统的代数几何》
  • 批准号:
    9103239
  • 财政年份:
    1991
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Infinite dimensional geometry of Kac-Moody groups and integrable systems
Kac-Moody 群和可积系统的无限维几何
  • 批准号:
    20K22309
  • 财政年份:
    2020
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
The construction of infinite dimensional singularity theory of completely non-integrable systems and its applications to the singular motion-planning problem
完全不可积系统无限维奇点理论的构建及其在奇异运动规划问题中的应用
  • 批准号:
    23654058
  • 财政年份:
    2011
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Construction of special solutions to Painleve systems and the quest for infinite-dimensional integrable systems
Painleve 系统特殊解决方案的构建以及对无限维可积系统的探索
  • 批准号:
    21740126
  • 财政年份:
    2009
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Level crossings in integrable finite-size quantum systems with infinite-dimensional symmetry and solvable models in nanoscopic or mesoscopic systems
具有无限维对称性的可积有限尺寸量子系统中的能级交叉以及纳米或介观系统中的可解模型
  • 批准号:
    17540351
  • 财政年份:
    2005
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Massive Integrable Models and Infinite Dimensional Symmetries
大规模可积模型和无限维对称性
  • 批准号:
    12640261
  • 财政年份:
    2000
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integrable field theories in higher dimensions and infinite-dimensional symmetries
高维和无限维对称性的可积场论
  • 批准号:
    10640283
  • 财政年份:
    1998
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Finite dimensional integrable structure in systems with infinite degree of freedom
无限自由度系统中的有限维可积结构
  • 批准号:
    10640165
  • 财政年份:
    1998
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: Integrable Systems, Infinite-Dimensional Calculus of Variations, and Abstract Hamiltonian Formalism
数学科学:可积系统、无限维变分法和抽象哈密顿形式主义
  • 批准号:
    8403200
  • 财政年份:
    1984
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Infinite Dimensional Lie Groups, Integrable and Almost Integrable Dynamics
数学科学:无限维李群、可积和几乎可积动力学
  • 批准号:
    8403238
  • 财政年份:
    1984
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Standard Grant
Finite and Infinite Dimensional Completely Integrable Systems
有限和无限维完全可积系统
  • 批准号:
    8101642
  • 财政年份:
    1981
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了