Collaborative Research: Stochastic Approximations for the Solution and Uncertainty Analysis of Data-Intensive Inverse Problems

合作研究:数据密集型反问题的求解和不确定性分析的随机近似

基本信息

项目摘要

In scientific fields ranging from geophysics and atmospheric science to medical imaging and network communication, data are being generated at remarkable rates. Such data are typically indirectly related to quantities of interest and the data sets are in many cases dynamically growing. Extracting desired information from these data then requires the solution of very large data-intensive inverse problems, perhaps repeatedly and in real time. The computational challenges of obtaining such a solution are compounded by the demands of validation and uncertainty analysis, which can easily become computationally prohibitive. This project will develop mathematical/statistical methods and computational tools for the solution of data-intensive inverse problems. The core of this approach is a stochastic reformulation of such problems that aims to significantly reduce the computational costs while adapting to modern hardware architectures.A framework will be developed to address the challenges arising at the interface between big data, inverse problems, data analysis, and uncertainty quantification. First, randomized methods for the solution of linear and nonlinear inverse problems will be introduced, so that efficient stochastic optimization methods can be used to overcome the hardware limitations of current algorithms and to generate solutions and uncertainty assessments in near-real time. New theory and scalable methods will be developed within the stochastic framework, thereby ensuring solution accuracy, reliability, and robustness. Second, advanced tools will be developed for model validation, error analysis, and uncertainty quantification. By partnering with application scientists (e.g., in atmospheric remote sensing), methods developed in this project will be of immediate practical utility for scientists and engineers.
在从地球物理学和大气科学到医学成像和网络通信的科学领域,数据的生成速度非常快。这些数据通常与感兴趣的数量间接相关,并且数据集在许多情况下动态增长。从这些数据中提取所需的信息,然后需要解决非常大的数据密集型的逆问题,也许重复和真实的时间。获得这样的解决方案的计算挑战是由验证和不确定性分析的需求,这很容易成为计算上的禁止。该项目将开发数学/统计方法和计算工具,用于解决数据密集型逆问题。该方法的核心是对此类问题进行随机重构,旨在显著降低计算成本的同时适应现代硬件架构。将开发一个框架来解决大数据、反问题、数据分析和不确定性量化之间的接口所带来的挑战。 首先,随机方法的线性和非线性逆问题的解决方案将被引入,以便有效的随机优化方法可以用来克服当前算法的硬件限制,并产生解决方案和不确定性评估在近实时。新的理论和可扩展的方法将在随机框架内开发,从而确保解决方案的准确性,可靠性和鲁棒性。其次,将开发先进的工具,用于模型验证、误差分析和不确定性量化。通过与应用科学家合作(例如,在大气遥感方面),该项目中开发的方法将对科学家和工程师立即产生实际效用。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
slimTrain---A Stochastic Approximation Method for Training Separable Deep Neural Networks
slimTrain---一种训练可分离深度神经网络的随机逼近方法
  • DOI:
    10.1137/21m1452512
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Newman, Elizabeth;Chung, Julianne;Chung, Matthias;Ruthotto, Lars
  • 通讯作者:
    Ruthotto, Lars
Least-squares finite element method for ordinary differential equations
常微分方程的最小二乘有限元法
Iterative Sampled Methods for Massive and Separable Nonlinear Inverse Problems
大规模可分离非线性反问题的迭代采样方法
Hybrid Projection Methods with Recycling for Inverse Problems
  • DOI:
    10.1137/20m1349515
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Julianne Chung;E. D. Sturler;Jiahua Jiang
  • 通讯作者:
    Julianne Chung;E. D. Sturler;Jiahua Jiang
Efficient learning methods for large-scale optimal inversion design
  • DOI:
    10.3934/naco.2022036
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Julianne Chung;Matthias Chung;S. Gazzola;M. Pasha
  • 通讯作者:
    Julianne Chung;Matthias Chung;S. Gazzola;M. Pasha
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthias Chung其他文献

Kiosk 7R-FB-01 - Optimizing 5D FBee Running Motion Resolved Reconstruction Using Variable Projection Augmented Lagrangian Method
亭 7R-FB-01 - 使用可变投影增广拉格朗日方法优化 5D FBee 运行运动解析重建
  • DOI:
    10.1016/j.jocmr.2024.100804
  • 发表时间:
    2024-03-01
  • 期刊:
  • 影响因子:
    6.100
  • 作者:
    Yitong Yang;Matthias Chung;Jerome Yerly;Davide Piccini;Matthias Stuber;John Oshinski
  • 通讯作者:
    John Oshinski
Image reconstructions using sparse dictionary representations and implicit, non-negative mappings
使用稀疏字典表示和隐式非负映射进行图像重建
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elizabeth Newman;Jack Michael Solomon;Matthias Chung
  • 通讯作者:
    Matthias Chung
Population modelling by examples ii
群体建模实例 ii
  • DOI:
    10.22360/summersim.2016.scsc.060
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Robert J. Smith;Bruce Y. Lee;A. Moustakas;A. Zeigler;M. Prague;Romualdo Santos;Matthias Chung;R. Gras;Valery Forbes;S. Borg;T. Comans;Yifei Ma;N. Punt;W. Jusko;L. Brotz;A. Hyder
  • 通讯作者:
    A. Hyder
Physics-informed neural networks for predicting liquid dairy manure temperature during storage
用于预测储存期间液态奶牛粪便温度的物理信息神经网络
Optimal Regularized Inverse Matrices for Inverse Problems
反问题的最优正则逆矩阵

Matthias Chung的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthias Chung', 18)}}的其他基金

Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
  • 批准号:
    2152661
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Planning I/UCRC Virginia Polytechnic Institute and State University: Center for Advanced Subsurface Earth Resource Models
规划 I/UCRC 弗吉尼亚理工学院和州立大学:高级地下地球资源模型中心
  • 批准号:
    1650463
  • 财政年份:
    2017
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333881
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333882
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
  • 批准号:
    2337427
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
  • 批准号:
    2337426
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240982
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: Discovery and calibration of stochastic chemical reaction network models
eMB:协作研究:随机化学反应网络模型的发现和校准
  • 批准号:
    2325184
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: Calibrating Digital Twins in the Era of Big Data with Stochastic Optimization
合作研究:利用随机优化校准大数据时代的数字孪生
  • 批准号:
    2226347
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240981
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
  • 批准号:
    2229345
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: Calibrating Digital Twins in the Era of Big Data with Stochastic Optimization
合作研究:利用随机优化校准大数据时代的数字孪生
  • 批准号:
    2226348
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了