Algorithms for Total Least Squares: Development, Evaluation and Novel Applications

总体最小二乘算法:开发、评估和新颖应用

基本信息

  • 批准号:
    0513214
  • 负责人:
  • 金额:
    $ 10.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-07-01 至 2008-06-30
  • 项目状态:
    已结题

项目摘要

The investigator and her postdoctoral fellow together with one graduate student are focusing their research for this grant on the development, analysis and implementation of novel algorithms for solution of linear ill-posed inverse problems in which both the measured data and the model are error-contaminated. The analysis will provide improved insight for the performance of new and existing algorithms. One direction is analysis of the linear support vector machine which has already been validated as an effective tool in statistical pattern recognition. Reformulation of the support vector machine to account for errors that may occur in the features of the patterns to be classified, an example of which might be error contaminated microarray data, utilizing the tools of regularized total least squares, will better account for these errors in data measurements. Another direction is the use of a total variation regularized structured total least squares algorithm to provide a completely new mechanism for combining edge preserving regularization with an errors in the variables model of signal inversion. For multiple, but similarly corrupted, signals, a concurrent solution technique will enhance signal inversion and restoration. While several approaches for Tikhonov regularized total least squares have been presented in literature, an effective comparison of their competitiveness for both synthetic and real data has not been performed. These investigators will determine which of algorithms are most suitable for extensions to realistic problems. All software developed for this project will be disseminated to collaborators for their applications and published on the world wide web. The investigators have a track record of studying and developing computational tools which can be utilized for many different applications. The successful outcome of this particular research will have major impact on solution of so-called inverse problems for biomedical applications, genetic data analysis and seismic tomography. These are areas in which the PI is actively collaborating with other practioners, including those at the Translational Genomics Research Center in Phoenix, AZ. Inverse problems arise in many biomedical situations: for example medical imaging can be used to obtain non-invasive information about the function of an internal organ, potentially also impacted by presence of malignant or benign tumor. Another direction is for the design of new and improved analysis of seismic data with the intent to lead to increased understanding of the dynamic nature of the Earth's interior, and in particular the relationship between plate tectonic processes observed at the surface and the thermo-chemical structure of the interior.
这位研究人员和她的博士后同事以及一名研究生将他们的研究重点放在开发、分析和实施解决线性不适定反问题的新算法上,在这种反问题中,测量数据和模型都被错误污染。该分析将为新算法和现有算法的性能提供更好的洞察力。一个方向是对线性支持向量机的分析,它已经被证明是统计模式识别中的一种有效工具。利用正则化总体最小二乘的工具,重新表述支持向量机,以考虑待分类模式的特征中可能出现的误差,例如可能是受误差污染的微阵列数据,将更好地考虑数据测量中的这些误差。另一个方向是使用全变差正则化结构化总体最小二乘算法来提供一种全新的机制,将边缘保持正则化与信号反演变量模型中的误差相结合。对于多个但类似地被破坏的信号,并行解决技术将增强信号反转和恢复。虽然文献中已经提出了几种Tikhonov正则化总体最小二乘的方法,但还没有对它们在合成数据和真实数据中的竞争力进行有效的比较。这些研究人员将确定哪种算法最适合扩展到现实问题。为该项目开发的所有软件将分发给合作者以供其应用,并在万维网上发布。调查人员有研究和开发可用于许多不同应用的计算工具的记录。这一特定研究的成功结果将对生物医学应用、遗传数据分析和地震层析的所谓逆问题的解决产生重大影响。在这些领域,PI正在积极与其他实践者合作,包括亚利桑那州凤凰城的翻译基因组研究中心的那些实践者。在许多生物医学情况下都会出现逆问题:例如,医学成像可以用来获得关于内部器官功能的非侵入性信息,这些信息可能也会受到恶性肿瘤或良性肿瘤的影响。另一个方向是设计新的和改进的地震数据分析,以便更好地了解地球内部的动态性质,特别是在地表观察到的板块构造过程与内部热化学结构之间的关系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rosemary Renaut其他文献

Special Issue on Mathematical Methods in Medical Imaging
  • DOI:
    10.1007/s10915-012-9576-9
  • 发表时间:
    2012-01-18
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Anne Gelb;Rosemary Renaut;Svetlana Roudenko;Douglas Cochran
  • 通讯作者:
    Douglas Cochran

Rosemary Renaut的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rosemary Renaut', 18)}}的其他基金

Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
  • 批准号:
    2152704
  • 财政年份:
    2022
  • 资助金额:
    $ 10.14万
  • 项目类别:
    Standard Grant
Approximate Singular Value Expansions and Solutions of Ill-Posed Problems
近似奇异值展开及不适定问题的解
  • 批准号:
    1913136
  • 财政年份:
    2019
  • 资助金额:
    $ 10.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Computational techniques for nonlinear joint inversion
合作研究:非线性联合反演计算技术
  • 批准号:
    1418377
  • 财政年份:
    2014
  • 资助金额:
    $ 10.14万
  • 项目类别:
    Standard Grant
Scientific Computing Research Environments for the Mathematical Sciences (SCREMS)
数学科学的科学计算研究环境 (SCREMS)
  • 批准号:
    9977234
  • 财政年份:
    1999
  • 资助金额:
    $ 10.14万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Numerical Solutions of Partial Differential Equations
数学科学:偏微分方程的数值解
  • 批准号:
    9402943
  • 财政年份:
    1995
  • 资助金额:
    $ 10.14万
  • 项目类别:
    Standard Grant
U.S.-Switzerland Cooperative Research on Order Stars, Riemann Surfaces, and Implicit Solutions of Hyperbolic Problems (Applied Mathematics)
美国-瑞士合作研究有序星、黎曼曲面和双曲问题的隐式解(应用数学)
  • 批准号:
    9123314
  • 财政年份:
    1992
  • 资助金额:
    $ 10.14万
  • 项目类别:
    Standard Grant
Development and Performance Evaluation of Parallel Algorithms for Synthetic Seismograms
合成地震图并行算法的开发和性能评估
  • 批准号:
    8812147
  • 财政年份:
    1988
  • 资助金额:
    $ 10.14万
  • 项目类别:
    Standard Grant

相似国自然基金

面向SCR脱硝系统的total NOx传感器混合导电界面设计及性能研 究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Education and Outreach using the MicroPulse Differential Absorption Lidars (MPD) and NYSM Profiler Network before, during, and after the 2024 Total Solar Eclipse
在 2024 年日全食之前、期间和之后使用微脉冲差分吸收激光雷达 (MPD) 和 NYSM 剖面仪网络进行教育和推广
  • 批准号:
    2345420
  • 财政年份:
    2024
  • 资助金额:
    $ 10.14万
  • 项目类别:
    Standard Grant
Combinatorics of Total Positivity: Amplituhedra and Braid Varieties
总正性的组合:幅面体和辫子品种
  • 批准号:
    2349015
  • 财政年份:
    2024
  • 资助金额:
    $ 10.14万
  • 项目类别:
    Standard Grant
Solar Eclipse Workshop: Observations of April 2024 Total Solar Eclipse and Community Discussion of Multi-Scale Coupling in Geospace Environment; Arlington, Texas; April 8-10, 2024
日食研讨会:2024年4月日全食观测及地球空间环境多尺度耦合的社区讨论;
  • 批准号:
    2415082
  • 财政年份:
    2024
  • 资助金额:
    $ 10.14万
  • 项目类别:
    Standard Grant
The influences of size reduction of a Total Artificial Heart on fluid dynamics and blood compatibility.
全人工心脏尺寸减小对流体动力学和血液相容性的影响。
  • 批准号:
    2903462
  • 财政年份:
    2024
  • 资助金额:
    $ 10.14万
  • 项目类别:
    Studentship
CAREER: Real-time control of elementary catalytic steps: Controlling total vs partial electrocatalytic oxidation of alkanes and olefins
职业:实时控制基本催化步骤:控制烷烃和烯烃的全部与部分电催化氧化
  • 批准号:
    2338627
  • 财政年份:
    2024
  • 资助金额:
    $ 10.14万
  • 项目类别:
    Continuing Grant
Collaborative Research: Citizen CATE Next-Generation 2024 Total Solar Eclipse Experiment, Phase 2
合作研究:Citizen CATE 下一代 2024 年日全食实验,第二阶段
  • 批准号:
    2308306
  • 财政年份:
    2023
  • 资助金额:
    $ 10.14万
  • 项目类别:
    Standard Grant
Machine learning algorithm to predict the postoperative activity in total knee arthroplasty patients
机器学习算法预测全膝关节置换术患者术后活动
  • 批准号:
    23K10518
  • 财政年份:
    2023
  • 资助金额:
    $ 10.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of non-invasive smartphone based navigation system for total hip arthroplasty.
开发基于智能手机的非侵入性全髋关节置换术导航系统。
  • 批准号:
    23K15709
  • 财政年份:
    2023
  • 资助金额:
    $ 10.14万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
easuring the wear of a new, all-polymer PEEK-OPTIMA femoral knee component for total knee replacement
减轻全膝关节置换术中新型全聚合物 PEEK-OPTIMA 股骨膝关节组件的磨损
  • 批准号:
    2885506
  • 财政年份:
    2023
  • 资助金额:
    $ 10.14万
  • 项目类别:
    Studentship
Physical Activity and Weight Loss to Improve Function and Pain after Total Knee Replacement
体力活动和减肥可改善全膝关节置换术后的功能和疼痛
  • 批准号:
    10711058
  • 财政年份:
    2023
  • 资助金额:
    $ 10.14万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了