CDS&E: Collaborative Research: Scalable Deep Learning-Based Quantitative Ultrasound Tomography

CDS

基本信息

  • 批准号:
    2152764
  • 负责人:
  • 金额:
    $ 27.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Empowered by advanced imaging methods, ultrasound computed tomography (USCT) provides highly specific tissue differentiation and diagnosis through rapid, low-cost scanning without using sedatives and X-rays. However, these physics-based imaging methods currently require a long processing time and at times encounter reconstruction errors, hindering them from being widely used in time-sensitive USCT applications (e.g., brain and breast imaging). To address these gaps, this project will create two artificial intelligence-based approaches to significantly improve the reconstruction speed and the quality of the state-of-the-art USCT technologies. A faster and more powerful USCT system will potentially lead to societal benefits such as improved medical outcomes, reduced risks, higher patient satisfaction, and reduced healthcare costs. The collaborative team of investigators will actively recruit and mentor undergraduate and graduate students with diverse backgrounds to participate in this research, reach out to K-12 educators and students to create student interest in data science, computing, and STEM fields, incorporate the findings into class modules, and disseminate the technology and findings to the public.This goal of this project is to create two open-source, high-performance computing (HPC)-enabled, and deep learning (DL)-based frameworks to significantly improve the reconstruction speed and the quality of full waveform inversion (FWI)-based USCT. FWI techniques have recently enabled USCT in the reconstruction of detailed quantitative material/tissue parameters, but they have a slow reconstruction speed and a high-computational cost. To address these challenges, one of the approaches will innovatively incorporate the adjoint-tomography theory (ATT) into a generative adversarial network (GAN) to reliably accelerate FWI-based USCT by providing strong priors for GAN. Rapid patient screening can be achieved using this method. The second DL approach leverages physics-guided, cycle-consistence in both training and its application to provide extraordinary, detailed reconstruction. The second method reduces the reliance on ground truth models in training, alleviates the dependence of initial models, and utilizes the purposely-built computing hardware for DL acceleration and hence can a) lower the false-positive rates while reducing unnecessary extra tests/biopsies and b) decrease the false negatives to enable early diagnosis/treatment. The theoretical foundations will be derived for both approaches. Computational details such as framework designing/tuning and the studies of scientific problems (e.g., influences of initial models and forward modeling errors) will be generated and disseminated. A cyberinfrastructure that provides HPC/GPU-enabled imaging data generation and training frameworks and two clinically relevant databases suitable for DL-based USCT studies will be created and made available to the public. The framework building philosophy and approaches developed in this project will demonstrate an efficient, systematic approach to applying deep learning-based techniques in a scalable and parallel manner, thereby accelerating broader DL-related topics in ultrasound imaging, photoacoustic tomography, X-ray computed tomography, radar technologies, geophysics, and magnetic resonance imaging.This project is jointly funded by the Engineering of Biomedical Systems (EBMS) Program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在先进成像方法的支持下,超声计算机断层扫描(USCT)通过快速、低成本的扫描提供高度特异性的组织分化和诊断,而无需使用镇静剂和X光。然而,这些基于物理的成像方法目前需要很长的处理时间,并且有时会遇到重建误差,这阻碍了它们在时间敏感的USCT应用中的广泛应用(例如,大脑和乳房成像)。为了解决这些差距,该项目将创建两种基于人工智能的方法,以显著提高最先进的USCT技术的重建速度和质量。更快、更强大的USCT系统可能会带来社会效益,如改善医疗结果、降低风险、提高患者满意度和降低医疗成本。合作研究团队将积极招募和指导不同背景的本科生和研究生参与这项研究,接触K-12教育工作者和学生,以激发学生对数据科学、计算和STEM领域的兴趣,将研究结果纳入课堂模块,并将技术和发现传播给公众。该项目的目标是创建两个开源、高性能计算(HPC)和基于深度学习(DL)的框架,以显著提高基于全波形反演(FWI)的USCT的重建速度和质量。最近,FWI技术使USCT能够重建详细的定量材料/组织参数,但重建速度慢,计算成本高。为了应对这些挑战,其中一种方法将创新性地将伴随断层成像理论(ATT)融入到生成性对抗网络(GAN)中,通过为GAN提供强大的先验来可靠地加速基于FWI的USCT。使用这种方法可以实现对患者的快速筛查。第二种DL方法在训练和应用中利用物理引导的循环一致性,以提供非凡的、详细的重建。第二种方法减少了训练中对基本真实模型的依赖,减轻了对初始模型的依赖,并利用了专门构建的用于DL加速的计算硬件,因此可以a)降低假阳性率,同时减少不必要的额外测试/活组织检查,以及b)减少假阴性以实现早期诊断/治疗。我们将为这两种方法提供理论基础。将编制和传播计算细节,如框架设计/调整和科学问题研究(例如,初始模型和正演模拟误差的影响)。将创建一个网络基础设施,提供支持HPC/GPU的成像数据生成和培训框架,以及两个适合基于DL的USCT研究的临床相关数据库,并向公众提供。该项目开发的框架构建理念和方法将展示一种高效、系统的方法,以可扩展和并行的方式应用基于深度学习的技术,从而加速超声成像、光声断层扫描、X射线计算机断层扫描、雷达技术、地球物理和磁共振成像中与深度学习相关的更广泛的主题。该项目由生物医学系统工程(EBMS)计划和已建立的刺激竞争研究计划(EPSCoR)联合资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Full Waveform Inversion-Based Ultrasound Computed Tomography Acceleration Using Two-Dimensional Convolutional Neural Networks
使用二维卷积神经网络的基于全波形反演的超声计算机断层扫描加速
  • DOI:
    10.1115/1.4062092
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kleman, Christopher;Anwar, Shoaib;Liu, Zhengchun;Gong, Jiaqi;Zhu, Xishi;Yunker, Austin;Kettimuthu, Rajkumar;He, Jiaze
  • 通讯作者:
    He, Jiaze
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Weihua Su其他文献

Structural and Aerodynamic Models for Aeroelastic Analysis of Corrugated Morphing Wings
波纹变形机翼气动弹性分析的结构和空气动力学模型
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Natsuki Tsushima;Kensuke Soneda;Tomohiro Yokozeki;Taro Imamura;Hitoshi Arizono;Weihua Su
  • 通讯作者:
    Weihua Su
Non-Contact Method of Heart Rate Measurement Based on Facial Tracking
基于面部追踪的非接触式心率测量方法
Enhancing microbial carbon use efficiency via exogenous carbon inputs: Implications for soil carbon sequestration and phosphorus availability
通过外源碳输入提高微生物碳利用效率:对土壤固碳和磷有效性的影响
  • DOI:
    10.1016/j.apsoil.2025.106160
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    5.000
  • 作者:
    Weihua Su;Yutong Ma;Mingxiu Hua;Hao Chen;Zhiguang Liu;Shenqiang Wang;Yu Wang
  • 通讯作者:
    Yu Wang
Deciphering the crop-soil-enzyme C:N:P stoichiometry nexus: A 5-year study on manure-induced changes in soil phosphorus transformation and release risk
解析作物-土壤-酶碳氮磷化学计量关系:一项为期 5 年的关于粪肥引起的土壤磷转化和释放风险变化的研究
  • DOI:
    10.1016/j.scitotenv.2024.173226
  • 发表时间:
    2024-07-15
  • 期刊:
  • 影响因子:
    8.000
  • 作者:
    Yunfei Yu;Hao Chen;Guanglei Chen;Weihua Su;Mingxiu Hua;Lei Wang;Xiaoyuan Yan;Shenqiang Wang;Yu Wang
  • 通讯作者:
    Yu Wang
VSLAM Optimization Method in Dynamic Scenes Based on YOLO-Fastest
基于YOLO-Fastest的动态场景VSLAM优化方法
  • DOI:
    10.3390/electronics12173538
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Zijing Song;Weihua Su;Haiyong Chen;Mianshi Feng;Jiahe Peng;Aifang Zhang
  • 通讯作者:
    Aifang Zhang

Weihua Su的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 27.51万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 27.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
  • 批准号:
    2313120
  • 财政年份:
    2024
  • 资助金额:
    $ 27.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
  • 批准号:
    2335762
  • 财政年份:
    2024
  • 资助金额:
    $ 27.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335802
  • 财政年份:
    2024
  • 资助金额:
    $ 27.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335801
  • 财政年份:
    2024
  • 资助金额:
    $ 27.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
  • 批准号:
    2336132
  • 财政年份:
    2024
  • 资助金额:
    $ 27.51万
  • 项目类别:
    Standard Grant
Collaborative Research: LTREB: The importance of resource availability, acquisition, and mobilization to the evolution of life history trade-offs in a variable environment.
合作研究:LTREB:资源可用性、获取和动员对于可变环境中生命史权衡演变的重要性。
  • 批准号:
    2338394
  • 财政年份:
    2024
  • 资助金额:
    $ 27.51万
  • 项目类别:
    Continuing Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 27.51万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Testing Evolutionary Models of Biotic Survival and Recovery from the Permo-Triassic Mass Extinction and Climate Crisis
合作研究:BoCP-实施:测试二叠纪-三叠纪大规模灭绝和气候危机中生物生存和恢复的进化模型
  • 批准号:
    2325380
  • 财政年份:
    2024
  • 资助金额:
    $ 27.51万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了