Computationally Tractable Inference for Multi-Messenger Astrophysics
多信使天体物理学的计算易于处理的推理
基本信息
- 批准号:2152746
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Multi-messenger astrophysics leverages multiple modalities of observations, such as gravitational waves, light, neutrinos, and cosmic rays, to observe astrophysical events and objects. Two specific issues arising in multi-messenger astrophysics motivate much of this research project: detecting cross-correlation between gravitational waves and electromagnetic sky maps and constraining the neutron star equation of state. Addressing these issues formally with the data produced from multi-messenger observations presents challenges that require the development of novel statistical and computational methodology. This project aims to develop improved (1) statistical techniques for detecting cross-correlation between a conjectured gravitational wave background and the cosmic microwave background sky map and (2) Bayesian algorithms for analysis of gravitational wave signatures in binary neutron star mergers. The research will provide interdisciplinary opportunities for professional development of the next generation of statisticians and astronomers. The project will focus on developing methods for performing goodness-of-fit tests for multidimensional parametric models characterized by high computational complexity, paying particular attention to identifying the sources of mismodelling. Another focus will be developing methods for convergence analysis of Markov chain Monte Carlo methods in both low-dimensional (fixed sizes of state space and observed data) and in high-dimensional (size of observed data and state space increase simultaneously) regimes. Convergence analysis in these regimes should be viewed as complementary; without such convergence analyses, practitioners have limited ability to assess the reliability of their MCMC experiments and hence any subsequent inference. The new methods will be made publicly available through open-source software.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多信使天体物理学利用多种观测方式,如引力波、光、中微子和宇宙射线,来观测天体物理事件和物体。多信使天体物理学中出现的两个具体问题推动了这一研究项目的大部分:探测引力波和电磁天空图之间的相互关联,以及约束中子星的状态方程。用多信使观测产生的数据正式处理这些问题是一项挑战,需要开发新的统计和计算方法。该项目旨在开发改进的(1)用于检测推测的引力波背景与宇宙微波背景天空图之间的互相关的统计技术,以及(2)用于分析双星中子星合并中的引力波特征的贝叶斯算法。这项研究将为下一代统计学家和天文学家的专业发展提供跨学科的机会。该项目将侧重于开发对具有高度计算复杂性的多维参数模型进行拟合优度测试的方法,并特别注意查明错误建模的来源。另一个重点将是发展马尔科夫链蒙特卡罗方法在低维(固定状态空间和观测数据的大小)和高维(观测数据和状态空间的大小同时增加)下的收敛分析方法。在这些制度下的收敛分析应被视为互补的;如果没有这种收敛分析,从业者评估其MCMC实验的可靠性的能力有限,因此任何后续推理都是有限的。新的方法将通过开源软件公开。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Galin Jones其他文献
Galin Jones的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Galin Jones', 18)}}的其他基金
Collaborative Research: Developing a Theoretical and Methodological Framework for High Dimensional Markov Chain Monte Carlo
合作研究:开发高维马尔可夫链蒙特卡罗的理论和方法框架
- 批准号:
1310096 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Output Analysis for Markov Chain Monte Carlo
马尔可夫链蒙特卡罗的输出分析
- 批准号:
0806178 - 财政年份:2008
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Eighth North American Meeting of New Researchers in Statistics and Probability
第八届北美统计和概率新研究者会议
- 批准号:
0505902 - 财政年份:2005
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Binucleating Bis(pyrazolyl)alkanes for Tractable Bimetallic Polymerization
职业:双核双(吡唑基)烷烃用于易处理的双金属聚合
- 批准号:
2337696 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Tractable human distal lung organoid model as a new efficient tool to study mesenchymal-epithelial interactions in COPD
易处理的人远端肺类器官模型作为研究慢性阻塞性肺病间充质-上皮相互作用的新有效工具
- 批准号:
NC/Y500641/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Training Grant
Tractable NAT-Modeled Bayesian Networks and Privacy Sensitive Construction of Agent Organizations
易处理的 NAT 模型贝叶斯网络和代理组织的隐私敏感构建
- 批准号:
RGPIN-2017-03715 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Integrating environment-by-epigenome interactions into a tractable model of epigenetic aging
将环境与表观基因组的相互作用整合到易于处理的表观遗传衰老模型中
- 批准号:
10674255 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
EDGE FGT: Creation of a Genetically Tractable Cephalopod Model using the Hummingbird Bobtail Squid
EDGE FGT:使用蜂鸟短尾鱿鱼创建基因可处理的头足类动物模型
- 批准号:
2220587 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Developing tractable model systems for filamentous bacteria in wastewater treatment
开发废水处理中丝状细菌的易处理模型系统
- 批准号:
2823290 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Studentship
Tractable Big Data and Big Models in Machine Learning
机器学习中易于处理的大数据和大模型
- 批准号:
RGPIN-2015-06068 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
EAGER: Toward a tractable genetic model of DNA virus - Drosophila interaction
EAGER:建立 DNA 病毒与果蝇相互作用的易处理遗传模型
- 批准号:
2135167 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Tractable Tandem Ion Mobility Technology using Structures for Lossless Ion Manipulations and Photodissociation
使用无损离子操作和光解离结构的易处理串联离子淌度技术
- 批准号:
10386669 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Tractable Tandem Ion Mobility Technology using Structures for Lossless Ion Manipulations and Photodissociation
使用无损离子操作和光解离结构的易处理串联离子淌度技术
- 批准号:
10322113 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:














{{item.name}}会员




