Tractable Tandem Ion Mobility Technology using Structures for Lossless Ion Manipulations and Photodissociation

使用无损离子操作和光解离结构的易处理串联离子淌度技术

基本信息

  • 批准号:
    10322113
  • 负责人:
  • 金额:
    $ 29.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

Project Summary In addition to concentration, the orientation and conformation of proteins, carbohydrates, metabolites, and nucleic acids are essential characteristics differentiating healthy and diseased states. In fact, broadly available advances in mass spectrometry (MS), with unparalleled levels of selectivity, speed, and sensitivity, have armed researchers with new biological insights and prompt additional questions regarding molecular and biophysical parameters that differentiate disease states but transcend MS measurements. Ion mobility spectrometry (IMS) is a gas-phase separation technique that directly complements MS measurements and expands understanding regarding molecular shape and dynamics in biological systems. However, comparatively low sample utilization and separation efficiencies have hindered its broad adoption in the bioanalytical and clinical communities. With recent, broadly available technological advances in the field of printed circuit board (PCB) manufacturing a new class of ion mobility separation is enabled that largely alleviates the drawbacks of its predecessors. The Structures for Lossless Ion Manipulations (SLIM) framework achieves this goal by establishing a dynamic electric field capable of confining ionized molecules for expanded periods of time along with a means to efficiently fractionate the different classes prior to analysis using MS. Contemporary SLIM experiments achieve impressive levels of gas-phase ion separation, but focus only on one dimension of separation due to restrictions largely imposed by the underlying PCB electrode arrangements and control electronics. To cast the SLIM platform into multiple separation dimensions and achieve new levels of biologically relevant diagnostics, the present effort aims to develop and disseminate an economical tandem IMS platform that integrates a series of innovative, simplifying strategies. These include the integration of a low-cost electrode switch that expands the experimental versatility within the SLIM platform and a series of ion compression strategies aimed at creating high-density ion populations. Most importantly, and prior to MS analysis, we will exploit the highly compressed nature of the ion beams within the SLIM by subjecting these species to high intensity ultraviolet photons to induce molecular disruption and yield more information regarding the target biological system. Concurrent efforts using laser irradiation and a new class of UV-C light emitting diodes will be compared with the latter offering considerable cost-savings. The third, composite goal of this project is to address the duty cycle issues of existing SLIM concepts by fully multiplexing the tandem SLIM-ultraviolet photodissociation (UVPD) platform. With the added functionality of IMSn and the extended, multi-channel SLIM paths, the separation power of the system is anticipated to represent the state-of-the-art. At the conclusion of the proposed research we expect to realize a fully functioning, high-efficiency SLIM-UVPD framework capable of interfacing to all mass analyzers classes and ready to address a suite of biological problems ranging from metabolomics to structural biology.
项目概要 除了浓度之外,蛋白质、碳水化合物、代谢物和蛋白质的方向和构象 核酸是区分健康状态和疾病状态的基本特征。事实上,广泛可用 质谱 (MS) 技术的进步,具有无与伦比的选择性、速度和灵敏度, 研究人员获得了新的生物学见解,并提出了有关分子和生物物理的其他问题 区分疾病状态但超越 MS 测量的参数。离子迁移谱 (IMS) 是一种气相分离技术,可直接补充 MS 测量并扩展理解 关于生物系统中的分子形状和动力学。但样本利用率相对较低 分离效率阻碍了其在生物分析和临床领域的广泛采用。和 印刷电路板 (PCB) 制造领域最近广泛应用的技术进步 实现了离子淌度分离的一类,大大减轻了其前身的缺点。这 无损离子操纵结构(SLIM)框架通过建立动态电来实现这一目标 能够在较长时间内限制电离分子的场以及有效地限制电离分子的方法 在使用 MS 进行分析之前对不同类别进行分级。当代 SLIM 实验取得了令人印象深刻的成果 气相离子分离的水平,但由于很大程度上限制,仅关注分离的一个维度 由底层 PCB 电极排列和控制电子设备施加。将SLIM平台铸成 多个分离维度并实现生物学相关诊断的新水平,目前的努力 旨在开发和传播一个经济的串联 IMS 平台,该平台集成了一系列创新、 简化策略。其中包括集成低成本电极开关,扩展了实验范围 SLIM 平台的多功能性和一系列旨在创建高密度离子的离子压缩策略 人口。最重要的是,在 MS 分析之前,我们将利用离子的高度压缩特性 通过将这些物质置于高强度紫外光子下以诱导分子在 SLIM 内产生光束 破坏并产生有关目标生物系统的更多信息。使用激光同时进行 辐照和新型 UV-C 发光二极管将与后者进行比较,提供相当大的 节省成本。该项目的第三个综合目标是解决现有 SLIM 的占空比问题 通过完全复用串联 SLIM-紫外线光解 (UVPD) 平台的概念。随着添加的 IMSn 的功能和扩展的多通道 SLIM 路径,系统的分离能力为 预计代表最先进的技术。在拟议的研究结束时,我们期望实现 功能齐全、高效的 SLIM-UVPD 框架能够连接到所有质量分析仪类别和 准备好解决从代谢组学到结构生物学的一系列生物学问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Clowers其他文献

Brian Clowers的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Clowers', 18)}}的其他基金

Tractable Tandem Ion Mobility Technology using Structures for Lossless Ion Manipulations and Photodissociation
使用无损离子操作和光解离结构的易处理串联离子淌度技术
  • 批准号:
    10386669
  • 财政年份:
    2021
  • 资助金额:
    $ 29.5万
  • 项目类别:
Tractable Tandem Ion Mobility Technology using Structures for Lossless Ion Manipulations and Photodissociation
使用无损离子操作和光解离结构的易处理串联离子淌度技术
  • 批准号:
    10548229
  • 财政年份:
    2021
  • 资助金额:
    $ 29.5万
  • 项目类别:
Innovative Native Ion Mobility Approaches for Transformational Measurements in Structural Biology
用于结构生物学转化测量的创新天然离子淌度方法
  • 批准号:
    10689746
  • 财政年份:
    2020
  • 资助金额:
    $ 29.5万
  • 项目类别:
Innovative Native Ion Mobility Approaches for Transformational Measurements in Structural Biology
用于结构生物学转化测量的创新天然离子淌度方法
  • 批准号:
    10042584
  • 财政年份:
    2020
  • 资助金额:
    $ 29.5万
  • 项目类别:
Innovative Native Ion Mobility Approaches for Transformational Measurements in Structural Biology
用于结构生物学转化测量的创新天然离子淌度方法
  • 批准号:
    10252003
  • 财政年份:
    2020
  • 资助金额:
    $ 29.5万
  • 项目类别:
Innovative Native Ion Mobility Approaches for Transformational Measurements in Structural Biology
用于结构生物学转化测量的创新天然离子淌度方法
  • 批准号:
    10477459
  • 财政年份:
    2020
  • 资助金额:
    $ 29.5万
  • 项目类别:

相似海外基金

Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 29.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 29.5万
  • 项目类别:
    Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 29.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 29.5万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 29.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 29.5万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 29.5万
  • 项目类别:
    Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 29.5万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 29.5万
  • 项目类别:
    EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 29.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了