BBSRC-NSF/BIO. Globally harmonized re-analysis of Data Independent Acquisition (DIA) proteomics datasets enables the creation of new resources

BBSRC-NSF/BIO。

基本信息

  • 批准号:
    BB/X001911/1
  • 负责人:
  • 金额:
    $ 62.82万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Proteins are important molecules that carry out most of the activities that take place in each cell of an organism, such as transporting substances and providing structural support. A proteome is the complete set of all the proteins in a system or organism under certain conditions at a given time, and proteomics is the large-scale study of proteomes. Proteomics applies to many parts of biology as it can tell us a lot about how a system or organism works, and can provide vital information about illnesses and potential treatments.The main technique used in proteomics research is mass spectrometry (MS), which works by breaking up a mixed protein sample into small fragments, sorting them and then reporting their mass. This information is used to determine the identity and amount of the proteins. Recently, a MS approach called data independent acquisition (DIA) has become popular. Traditional MS, called data dependent acquisition (DDA), is biased towards the fragments that have the strongest signal, but DIA is not limited by this. This means that DIA allows researchers to quantify proteins that are present even in very small numbers, allowing for better representation of the proteome. Spectral libraries are collections of pre-annotated experimental MS outputs that are used in DIA data analysis. Recently spectral libraries have been developed using machine learning, which provides a great opportunity for novel artificial intelligence (AI) approaches to proteomics research. Overall, quantitative DIA data is very rich, as it represents a comprehensive digital record of the proteome that can be analysed using different tools and approaches over time.The groups involved in this project have been working to make DIA proteomics data freely available worldwide via the ProteomeXchange (PX) consortium, and to ensure that this data is generated and reported using consistent standards via the Proteomics Standards Initiative (PSI). This publicly-available data provides a great opportunity for researchers to reconfirm original results and obtain new insights. However, there have so far been very limited re-analysis efforts. This may be due to the complex nature of DIA data analysis, and also because of a lack of availability of spectral libraries.Our project aims to address this by generating new knowledge coming from the re-analysis of DIA proteomics datasets and creating novel infrastructure to better support public DIA proteomics data and spectral libraries. Additionally, we will create novel infrastructure for making spectral libraries Findable, Accessible, Interoperable and Re-usable (FAIR), which will enhance the reproducibility of published studies. To achieve these goals we will produce reliable and high-quality protein expression (i.e. protein production) and abundance information from the re-analysis of manually curated public DIA quantitative datasets and we will make these freely available in PX and via EMBL-EBI's Expression Atlas, to be consumed by non-experts in proteomics. We will also create protein co-expression and abundance maps for different biological conditions using the DIA re-analyses and make them available via PX. This would be the first time that these maps are generated on such large amounts of DIA proteomics data and will take advantage of the unique advantages, such as size and coverage, of DIA datasets. Further, we will develop novel infrastructure and data standards to make DIA proteomics data and, as a key point, spectral libraries FAIR. This will involve creating open source tools and infrastructure, and developing PSI standards.The co-expression maps, infrastructure and standards that will be generated by this project will benefit researchers across a wide range of biological and biomedical fields, and will provide the ability to strengthen and connect existing research findings. We will disseminate our work widely to train and assist researchers in making full use of these valuable resources.
蛋白质是重要的分子,执行生物体每个细胞中发生的大部分活动,例如运输物质和提供结构支持。蛋白质组是系统或生物体在特定时间、特定条件下所有蛋白质的完整集合,蛋白质组学是对蛋白质组的大规模研究。蛋白质组学适用于生物学的许多部分,因为它可以告诉我们很多关于系统或有机体如何运作的信息,并且可以提供有关疾病和潜在治疗方法的重要信息。蛋白质组学研究中使用的主要技术是质谱法 (MS),其工作原理是将混合蛋白质样品分解成小片段,对它们进行分类,然后报告它们的质量。该信息用于确定蛋白质的身份和数量。最近,一种称为数据独立采集 (DIA) 的 MS 方法变得流行。传统的 MS,称为数据相关采集 (DDA),偏向于信号最强的片段,但 DIA 不受此限制。这意味着 DIA 允许研究人员量化存在的蛋白质,即使数量非常少,从而更好地表示蛋白质组。谱库是 DIA 数据分析中使用的预先注释的实验 MS 输出的集合。最近,利用机器学习开发了光谱库,这为蛋白质组学研究的新型人工智能(AI)方法提供了绝佳的机会。总体而言,定量 DIA 数据非常丰富,因为它代表了蛋白质组的全面数字记录,可以随着时间的推移使用不同的工具和方法进行分析。参与该项目的小组一直致力于通过 ProteomeXchange (PX) 联盟在全球范围内免费提供 DIA 蛋白质组数据,并确保通过蛋白质组标准倡议 (PSI) 使用一致的标准生成和报告这些数据。这些公开数据为研究人员提供了重新确认原始结果并获得新见解的绝佳机会。然而,迄今为止,重新分析的工作非常有限。这可能是由于 DIA 数据分析的复杂性,也因为缺乏可用的谱库。我们的项目旨在通过从 DIA 蛋白质组数据集的重新分析中生成新知识并创建新颖的基础设施来更好地支持公共 DIA 蛋白质组数据和谱库来解决这个问题。此外,我们将创建新颖的基础设施,使光谱库可查找、可访问、可互操作和可重用(FAIR),这将提高已发表研究的可重复性。为了实现这些目标,我们将通过重新分析手动管理的公共 DIA 定量数据集来生成可靠且高质量的蛋白质表达(即蛋白质生产)和丰度信息,并且我们将在 PX 中并通过 EMBL-EBI 的表达图谱免费提供这些信息,供蛋白质组学的非专家使用。我们还将使用 DIA 重新分析创建不同生物条件下的蛋白质共表达和丰度图,并通过 PX 提供它们。这将是第一次在如此大量的 DIA 蛋白质组数据上生成这些图谱,并将利用 DIA 数据集的独特优势,例如大小和覆盖范围。此外,我们将开发新颖的基础设施和数据标准,使 DIA 蛋白质组数据以及作为关键的光谱库变得公平。这将涉及创建开源工具和基础设施,以及制定 PSI 标准。该项目将生成的共表达图谱、基础设施和标准将使广泛的生物和生物医学领域的研究人员受益,并将提供加强和连接现有研究成果的能力。我们将广泛传播我们的工作,以培训和协助研究人员充分利用这些宝贵的资源。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Expression Atlas update: insights from sequencing data at both bulk and single cell level.
  • DOI:
    10.1093/nar/gkad1021
  • 发表时间:
    2024-01-05
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    George, Nancy;Fexova, Silvie;Fuentes, Alfonso Munoz;Madrigal, Pedro;Bi, Yalan;Iqbal, Haider;Kumbham, Upendra;Nolte, Nadja Francesca;Zhao, Lingyun;Thanki, Anil S.;Yu, Iris D.;Marugan Calles, Jose C.;Erdos, Karoly;Vilmovsky, Liora;Kurri, Sandeep R.;Vathrakokoili-Pournara, Anna;Osumi-Sutherland, David;Prakash, Ananth;Wang, Shengbo;Tello-Ruiz, Marcela K.;Kumari, Sunita;Ware, Doreen;Goutte-Gattat, Damien;Hu, Yanhui;Brown, Nick;Perrimon, Norbert;Vizcaino, Juan Antonio;Burdett, Tony;Teichmann, Sarah;Brazma, Alvis;Papatheodorou, Irene
  • 通讯作者:
    Papatheodorou, Irene
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Juan Antonio Vizcaino其他文献

OmicsDI RDF
组学DI RDF
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shin Kawano;Yasset Perez Riverol;Tobias Ternent;Yuki Moriya;Eric Deutsch;Michel Dumontier;Juan Antonio Vizcaino;Henning Hermjakob;and Susumu Goto
  • 通讯作者:
    and Susumu Goto
Implementation of flexible search for proteomics metadata
蛋白质组元数据灵活搜索的实现
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shin Kawano;Yuki Moriya;Tobias Ternent;Juan Antonio Vizcaino;Eric Deutsch
  • 通讯作者:
    Eric Deutsch

Juan Antonio Vizcaino的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Juan Antonio Vizcaino', 18)}}的其他基金

The Open Data Exchange Ecosystem in Proteomics: Evolving its Utility
蛋白质组学中的开放数据交换生态系统:不断发展其实用性
  • 批准号:
    EP/Y035984/1
  • 财政年份:
    2024
  • 资助金额:
    $ 62.82万
  • 项目类别:
    Research Grant
3D-Proteomics: FAIRification of proteomics data for comprehensive integration with structural biology information
3D-蛋白质组学:蛋白质组学数据的公平化,以与结构生物学信息全面整合
  • 批准号:
    BB/V018779/1
  • 财政年份:
    2022
  • 资助金额:
    $ 62.82万
  • 项目类别:
    Research Grant
GRAPPA - Global compRehensive Atlas of Peptide and Protein Abundance
GRAPPA - 全球肽和蛋白质丰度综合图谱
  • 批准号:
    BB/T019670/1
  • 财政年份:
    2021
  • 资助金额:
    $ 62.82万
  • 项目类别:
    Research Grant
BBSRC-NSF/BIO PTMeXchange: Globally harmonized re-analysis and sharing of data on post-translational modifications
BBSRC-NSF/BIO PTMeXchange:全球统一的翻译后修饰数据重新分析和共享
  • 批准号:
    BB/S01781X/1
  • 财政年份:
    2019
  • 资助金额:
    $ 62.82万
  • 项目类别:
    Research Grant
In silico mass spectrometry for biologists: Tools and resources for next-generation proteomics
生物学家的计算机质谱分析:下一代蛋白质组学的工具和资源
  • 批准号:
    BB/P024599/1
  • 财政年份:
    2017
  • 资助金额:
    $ 62.82万
  • 项目类别:
    Research Grant

相似国自然基金

SYNJ1蛋白片段通过促进突触蛋白NSF聚集在帕金森病发生中的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
NSF蛋白亚硝基化修饰所介导的GluA2 containing-AMPA受体膜稳定性在卒中后抑郁中的作用及机制研究
  • 批准号:
    82071300
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
参加中美(NSFC-NSF)生物多样性项目评审会
  • 批准号:
    31981220281
  • 批准年份:
    2019
  • 资助金额:
    2.3 万元
  • 项目类别:
    国际(地区)合作与交流项目
参加中美(NSFC-NSF)生物多样性项目评审会
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    2 万元
  • 项目类别:
    国际(地区)合作与交流项目
中美(NSFC-NSF)EEID联合评审会
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    2.6 万元
  • 项目类别:
    国际(地区)合作与交流项目
中美(NSFC-NSF)EEID联合评审会
  • 批准号:
    81981220037
  • 批准年份:
    2019
  • 资助金额:
    2.1 万元
  • 项目类别:
    国际(地区)合作与交流项目
中美(NSFC-NSF)EEID联合评审会
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    1.2 万元
  • 项目类别:
    国际(地区)合作与交流项目
Mon1b 协同NSF调控早期内吞体膜融合的机制研究
  • 批准号:
    31671397
  • 批准年份:
    2016
  • 资助金额:
    67.0 万元
  • 项目类别:
    面上项目

相似海外基金

BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
  • 批准号:
    BB/Y000455/1
  • 财政年份:
    2024
  • 资助金额:
    $ 62.82万
  • 项目类别:
    Research Grant
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
  • 批准号:
    BB/Y001117/1
  • 财政年份:
    2024
  • 资助金额:
    $ 62.82万
  • 项目类别:
    Research Grant
22-BBSRC/NSF-BIO Building synthetic regulatory units to understand the complexity of mammalian gene expression
22-BBSRC/NSF-BIO 构建合成调控单元以了解哺乳动物基因表达的复杂性
  • 批准号:
    BB/Y008898/1
  • 财政年份:
    2024
  • 资助金额:
    $ 62.82万
  • 项目类别:
    Research Grant
20-BBSRC/NSF-BIO Regulatory control of innate immune response in marine invertebrates
20-BBSRC/NSF-BIO 海洋无脊椎动物先天免疫反应的调节控制
  • 批准号:
    BB/W017865/1
  • 财政年份:
    2024
  • 资助金额:
    $ 62.82万
  • 项目类别:
    Research Grant
22-BBSRC/NSF-BIO - Interpretable & Noise-robust Machine Learning for Neurophysiology
22-BBSRC/NSF-BIO - 可解释
  • 批准号:
    BB/Y008758/1
  • 财政年份:
    2024
  • 资助金额:
    $ 62.82万
  • 项目类别:
    Research Grant
22-BBSRC/NSF-BIO: Community-dependent CRISPR-cas evolution and robust community function
22-BBSRC/NSF-BIO:群落依赖性 CRISPR-cas 进化和强大的群落功能
  • 批准号:
    BB/Y008774/1
  • 财政年份:
    2024
  • 资助金额:
    $ 62.82万
  • 项目类别:
    Research Grant
UKRI/BBSRC-NSF/BIO: Interpretable and Noise-Robust Machine Learning for Neurophysiology
UKRI/BBSRC-NSF/BIO:用于神经生理学的可解释且抗噪声的机器学习
  • 批准号:
    2321840
  • 财政年份:
    2023
  • 资助金额:
    $ 62.82万
  • 项目类别:
    Continuing Grant
21-BBSRC/NSF-BIO: Developing large serine integrases as tools for constructing and manipulating synthetic replicons.
21-BBSRC/NSF-BIO:开发大型丝氨酸整合酶作为构建和操作合成复制子的工具。
  • 批准号:
    BB/X012085/1
  • 财政年份:
    2023
  • 资助金额:
    $ 62.82万
  • 项目类别:
    Research Grant
UKRI/BBSRC-NSF/BIO Determining the Roles of Fusarium Effector Proteases in Plant Pathogenesis
UKRI/BBSRC-NSF/BIO 确定镰刀菌效应蛋白酶在植物发病机制中的作用
  • 批准号:
    BB/X012131/1
  • 财政年份:
    2023
  • 资助金额:
    $ 62.82万
  • 项目类别:
    Research Grant
BBSRC-NSF/BIO. Globally harmonized re-analysis of Data Independent Acquisition (DIA) proteomics datasets enables the creation of new resources
BBSRC-NSF/BIO。
  • 批准号:
    BB/X002020/1
  • 财政年份:
    2023
  • 资助金额:
    $ 62.82万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了