CDS&E/Collaborative Research: Interpretable Machine Learning for Microstructure-Sensitive Fatigue Crack Initiation from Defects in Additive Manufactured Components

CDS

基本信息

  • 批准号:
    2152868
  • 负责人:
  • 金额:
    $ 27.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Advancements in experimental and computational methods in recent decades have enabled production of a wealth of data for many engineering and science applications. However, these data do not readily translate into engineering knowledge. The objective of this project is to develop a machine-learning approach to facilitate this data-to-knowledge translation to better understand materials integrity. Such knowledge can help understand mechanical behaviors, such as fatigue, in additive manufactured components. The developed approach will improve the conventional process of materials certification, which is prohibitively expensive. The outcome of this project could potentially reduce consumer costs and increase adoption, which may ultimately advance the U.S. economy. To engage future generations and promote inclusion, K-12 students will interact with a user-friendly interface for hands-on demonstration of learning natural laws at the Utah Engineering Day and Purdue Space Day.Increasing the success and reliability of translating data into knowledge requires a shifted focus toward explainability and interpretability to perpetuate sound science and engineering principles. To this end, Genetic Programming based Symbolic Regression (GPSR) will be utilized to model fatigue damage in structural materials. GPSR models will then be trained using generated data sets from materials simulations, experiments, and guided by existing knowledge to discover new underlying mechanisms, i.e., knowledge. The research tasks will address a tractable means to model microstructure-dependent mechanisms into fatigue life predictions and supplant current practices. Specifically, GPSR models will be trained on a combination of high-energy X-ray diffraction microscopy and crystal plasticity finite element simulation data. The generated GPSR models will be a physics-regularized multiscale homogenization of pore-induced, microstructure-dependent fatigue crack initiation in an additive manufactured metal.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近几十年来,实验和计算方法的进步为许多工程和科学应用提供了丰富的数据。然而,这些数据并不容易转化为工程知识。该项目的目标是开发一种机器学习方法,以促进这种数据到知识的翻译,以更好地了解材料的完整性。这些知识有助于了解添加剂制造的部件中的机械行为,如疲劳。开发的方法将改进昂贵得令人望而却步的传统材料认证程序。该项目的结果可能会降低消费者成本并增加采用率,最终可能会推动美国经济。为了吸引后代并促进包容性,K-12年级的学生将在犹他州工程日和普渡太空日与用户友好的界面互动,实际演示学习自然法则。要提高将数据转化为知识的成功率和可靠性,需要将重点转移到可解释性和可解释性,以延续健全的科学和工程原则。为此,将利用基于遗传编程的符号回归(GPSR)对结构材料的疲劳损伤进行建模。然后,将使用从材料模拟、实验生成的数据集来训练GPSR模型,并在现有知识的指导下发现新的潜在机制,即知识。研究任务将解决一种易于处理的方法,将微观结构依赖的机制建模为疲劳寿命预测,并取代当前的做法。具体来说,GPSR模型将结合高能X射线衍射显微镜和晶体塑性有限元模拟数据进行训练。生成的GPSR模型将是对添加剂制造的金属中气孔诱导的、依赖于微结构的疲劳裂纹萌生的物理规则化多尺度均质化。该奖项反映了NSF的法定使命,并已通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jacob Hochhalter其他文献

Inherently interpretable machine learning solutions to differential equations
本质上可解释的微分方程的机器学习解决方案
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Hongsup Oh;R. Amici;Geoffrey Bomarito;Shandian Zhe;R. Kirby;Jacob Hochhalter
  • 通讯作者:
    Jacob Hochhalter
Failure Mode Analysis of Microstructural Alignment in Freeze-Cast Scaffolds Using FEM
Modeling plasticity-mediated void growth at the single crystal scale: A physics-informed machine learning approach
  • DOI:
    10.1016/j.mechmat.2024.105151
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Karl Garbrecht;Andrea Rovinelli;Jacob Hochhalter;Paul Christodoulou;Ricardo A. Lebensohn;Laurent Capolungo
  • 通讯作者:
    Laurent Capolungo
Complementing a continuum thermodynamic approach to constitutive modeling with symbolic regression
通过符号回归补充本构建模的连续热力学方法
Computationally guided alloy design and microstructure-property relationships for non-equiatomic Ti–Zr–Nb–Ta–V–Cr alloys with tensile ductility made by laser powder bed fusion
  • DOI:
    10.1016/j.msea.2024.146922
  • 发表时间:
    2024-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dillon Jobes;Daniel Rubio-Ejchel;Lucero Lopez;William Jenkins;Aditya Sundar;Christopher Tandoc;Jacob Hochhalter;Amit Misra;Liang Qi;Yong-Jie Hu;Jerard V. Gordon
  • 通讯作者:
    Jerard V. Gordon

Jacob Hochhalter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jacob Hochhalter', 18)}}的其他基金

MRI: Acquisition of an Xradia Versa 620 to Enable National Capabilities for High-throughput, Multiscale 3D/4D Materials Research
MRI:购买 Xradia Versa 620 增强国家高通量、多尺度 3D/4D 材料研究能力
  • 批准号:
    2216225
  • 财政年份:
    2022
  • 资助金额:
    $ 27.53万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 27.53万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 27.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
  • 批准号:
    2313120
  • 财政年份:
    2024
  • 资助金额:
    $ 27.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
  • 批准号:
    2335762
  • 财政年份:
    2024
  • 资助金额:
    $ 27.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335802
  • 财政年份:
    2024
  • 资助金额:
    $ 27.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335801
  • 财政年份:
    2024
  • 资助金额:
    $ 27.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
  • 批准号:
    2336132
  • 财政年份:
    2024
  • 资助金额:
    $ 27.53万
  • 项目类别:
    Standard Grant
Collaborative Research: LTREB: The importance of resource availability, acquisition, and mobilization to the evolution of life history trade-offs in a variable environment.
合作研究:LTREB:资源可用性、获取和动员对于可变环境中生命史权衡演变的重要性。
  • 批准号:
    2338394
  • 财政年份:
    2024
  • 资助金额:
    $ 27.53万
  • 项目类别:
    Continuing Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 27.53万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Testing Evolutionary Models of Biotic Survival and Recovery from the Permo-Triassic Mass Extinction and Climate Crisis
合作研究:BoCP-实施:测试二叠纪-三叠纪大规模灭绝和气候危机中生物生存和恢复的进化模型
  • 批准号:
    2325380
  • 财政年份:
    2024
  • 资助金额:
    $ 27.53万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了