Collaborative Research: CIF: Small: Interpretable Fair Machine Learning: Frameworks, Robustness, and Scalable Algorithms

协作研究:CIF:小型:可解释的公平机器学习:框架、稳健性和可扩展算法

基本信息

项目摘要

Machine-learning algorithms are revolutionizing modern decision-making processes, from deciding job offers, evaluating loans, and determining university enrollments to proposing medical interventions. However, despite the recent success of machine-learning algorithms in solving large-scale problems, serious concerns have been raised that they are not entirely objective and can inadvertently amplify human biases. The proposed research project addresses this fundamental shortcoming by developing scalable data-driven methods and algorithms that generate interpretable policies aiming for provable fairness guarantees. The project will inform the policy-makers or decision-makers about possible outcomes and tradeoffs between machine learning outcomes and social equity/fairness. Furthermore, the research results will provide guidelines to support policies as well as regulations to promote diversity and fairness in many relevant domains of application. The proposed research leverages recent advances in discrete and robust optimization, aiming for solution methodologies that faithfully address the exact learning models with fairness measures, provide strong out-of-sample fairness guarantees, are robust against bias and noisy outliers in the dataset, and can be solved efficiently for large-scale problem instances. More specifically, the proposed research aims to develop effective new frameworks for fair learning via sub-data selection that can leverage past efforts and enhance the fairness in the learning outcomes. Robust solution schemes will be carefully designed to significantly mitigate the severe overfitting effects of empirical-based methods and improve out-of-sample performance. Efforts will also be devoted to addressing algorithmic fairness in multi-stage decision-making and resource-allocation problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习算法正在彻底改变现代决策过程,从决定工作机会、评估贷款、确定大学入学率到提出医疗干预措施。然而,尽管机器学习算法最近在解决大规模问题方面取得了成功,但人们严重担心它们并不完全客观,可能会无意中放大人类的偏见。拟议的研究项目通过开发可扩展的数据驱动的方法和算法来解决这一根本性的缺点,这些方法和算法可以生成可解释的政策,以实现可证明的公平性保证。该项目将告知政策制定者或决策者机器学习成果与社会公平/公正之间的可能结果和权衡。此外,研究结果将为支持政策和法规提供指导,以促进许多相关应用领域的多样性和公平性。拟议的研究利用了离散和鲁棒优化的最新进展,旨在解决方法,忠实地解决具有公平性措施的精确学习模型,提供强大的样本外公平性保证,对数据集中的偏差和噪声离群值具有鲁棒性,并且可以有效地解决大规模问题实例。更具体地说,拟议的研究旨在通过子数据选择,可以利用过去的努力,提高学习成果的公平性,为公平学习开发有效的新框架。稳健的解决方案将被精心设计,以显着减轻严重的过拟合效应的基于化学的方法,并提高样本外的性能。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Smooth Robust Tensor Completion for Background/Foreground Separation with Missing Pixels: Novel Algorithm with Convergence Guarantee
  • DOI:
    10.48550/arxiv.2203.16328
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bo Shen;Weijun Xie;Zhen Kong
  • 通讯作者:
    Bo Shen;Weijun Xie;Zhen Kong
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Weijun Xie其他文献

Exact and Approximation Algorithms for Sparse Principal Component Analysis
稀疏主成分分析的精确和近似算法
Fabrication of Ni-Cr-FeOsubx/sub ceramic supercapacitor electrodes and devices by one-step electric discharge ablation
通过一步放电烧蚀制备 Ni-Cr-FeOₓ陶瓷超级电容器电极和器件
  • DOI:
    10.1016/j.est.2023.109429
  • 发表时间:
    2023-12-25
  • 期刊:
  • 影响因子:
    9.800
  • 作者:
    Dawei Liu;Weijun Xie;Zehan Xu;Peiquan Deng;Zhaozhi Wu;Igor Zhitomirsky;Wenxia Wang;Ri Chen;Li Zhou;Yunying Xu;Kaiyuan Shi
  • 通讯作者:
    Kaiyuan Shi
On distributionally robust chance constrained programs with Wasserstein distance
  • DOI:
    10.1007/s10107-019-01445-5
  • 发表时间:
    2018-06
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Weijun Xie
  • 通讯作者:
    Weijun Xie
Transillumination imaging for detection of stress cracks in maize kernels using modified YOLOv8 after pruning and knowledge distillation
修剪和知识蒸馏后使用改进的 YOLOv8 对玉米籽粒中的应力裂纹进行检测的透照成像
  • DOI:
    10.1016/j.compag.2025.109959
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    8.900
  • 作者:
    Jingshen Xu;Shuyu Yang;Qing Liang;Zhaohui Zheng;Liuyang Ren;Hanyu Fu;Pei Yang;Weijun Xie;Deyong Yang
  • 通讯作者:
    Deyong Yang
Dynamic Planning of Facility Locations with Benefits from Multitype Facility Colocation
受益于多类型设施托管的设施位置动态规划

Weijun Xie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Weijun Xie', 18)}}的其他基金

D-ISN/Collaborative Research: Early Warning Systems for Emerging Epidemics of Illicit Substances
D-ISN/合作研究:非法物质新出现流行病的早期预警系统
  • 批准号:
    2240409
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Interpretable Fair Machine Learning: Frameworks, Robustness, and Scalable Algorithms
协作研究:CIF:小型:可解释的公平机器学习:框架、稳健性和可扩展算法
  • 批准号:
    2246417
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: Favorable Optimization under Distributional Distortions: Frameworks, Algorithms, and Applications
职业:分布扭曲下的有利优化:框架、算法和应用
  • 批准号:
    2246414
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: Favorable Optimization under Distributional Distortions: Frameworks, Algorithms, and Applications
职业:分布扭曲下的有利优化:框架、算法和应用
  • 批准号:
    2046426
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402817
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402816
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403123
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326621
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
  • 批准号:
    2312872
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了