Markov Random Fields, Geostatistics and Matrix-Free Computation
马尔可夫随机场、地统计学和无矩阵计算
基本信息
- 批准号:2153669
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the past few decades, spatial statistics has become increasingly important in agriculture, epidemiology, geology, image analysis and environmental science. PI's prior research provided new perspectives in connecting two major branches of spatial statistics, namely the Markov random fields and geostatistics and in advancing fast statistical computations. At present, many important scientific applications demand use of complex spatial models and their multivariate and spatial-temporal versions. However, statistical computations of these complex spatial models have remained a challenge. The project derives new mathematical understanding on these complex spatial and spatial-temporal models, which then opens up the possibility of advancing various scalable statistical computations with minimal storage. The project will contribute to obtaining enhanced scientific understanding in studies such as arsenic and magnesium contamination and hydro-chemical analysis of groundwater and spatial and spatial temporal variations in opioid overdose cases in the United States.The project brings together mathematical and computational knowledge from different scientific fields to develop principled frameworks for spatial statistics and inference. The research aims to provide new understanding on (i) constructions of higher neighborhood order Gaussian Markov random fields, (ii) joint modeling of two or more spatial variables, and (iii) complex spatial-temporal models. Novel matrix-free computations are proposed to advance statistical inference. These computations include not just best linear unbiased predictions and residual maximum likelihood estimation, but also scalable Hamiltonian Monte Carlo methods. Applications will include mapping (1) heavy metal contamination in groundwater and (2) geographic variations in drug overdose cases across the United States. The project also aims to integrate research and educational activities through developing short courses and case studies on spatial statistics and scalable computation, and through providing valuable training and learning opportunities for graduate students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的几十年里,空间统计在农业、流行病学、地质学、图像分析和环境科学中发挥着越来越重要的作用。PI先前的研究为连接空间统计的两个主要分支即马尔可夫随机场和地质统计学以及推进快速统计计算提供了新的视角。目前,许多重要的科学应用都需要使用复杂的空间模型及其多变量和时空版本。然而,这些复杂空间模型的统计计算仍然是一个挑战。该项目对这些复杂的空间和时空模型产生了新的数学理解,从而为以最小存储推进各种可扩展统计计算开辟了可能性。该项目将有助于增进对诸如砷和镁污染、地下水水化学分析以及美国阿片类药物过量病例的时空变化等研究的科学理解。该项目汇集了来自不同科学领域的数学和计算知识,以开发空间统计和推理的原则框架。本研究旨在对(i)高邻域阶高斯马尔可夫随机场的构造,(ii)两个或多个空间变量的联合建模,以及(iii)复杂时空模型提供新的认识。提出了新的无矩阵计算来推进统计推断。这些计算不仅包括最好的线性无偏预测和残差最大似然估计,而且还包括可扩展的哈密顿蒙特卡罗方法。应用将包括绘图(1)地下水中的重金属污染和(2)美国各地药物过量病例的地理差异。该项目还旨在通过开发空间统计和可扩展计算的短期课程和案例研究,以及为研究生提供宝贵的培训和学习机会,将研究和教育活动结合起来。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Debashis Mondal其他文献
Photocontrolled activation of doubly emo/em-nitrobenzyl-protected small molecule benzimidazoles leads to cancer cell death
光控激活双 emo/em-硝基苄基保护的小分子苯并咪唑导致癌细胞死亡
- DOI:
10.1039/d3sc01786a - 发表时间:
2023-08-23 - 期刊:
- 影响因子:7.400
- 作者:
Manzoor Ahmad;Naveen J. Roy;Anurag Singh;Debashis Mondal;Abhishek Mondal;Thangavel Vijayakanth;Mayurika Lahiri;Pinaki Talukdar - 通讯作者:
Pinaki Talukdar
High-frequency rectifiers based on type-II Dirac fermions
- DOI:
doi.org/10.1038/s41467-021-21906-w - 发表时间:
2021 - 期刊:
- 影响因子:16.6
- 作者:
Libo Zhang;Zhiqingzi Chen;Kaixuan Zhang;Lin Wang;Huang Xu;Li Han;Wanlong Guo;Yao Yang;Chia-Nung Kuo;Chin Shan Lue;Debashis Mondal;Jun Fuji;Ivana Vobornik;Barun Ghosh;Amit Agarwal;Huaizhong Xing;Xiaoshuang Chen;Antonio Politano;Wei Lu - 通讯作者:
Wei Lu
Wavelet variances for heavy‐tailed time series
重尾时间序列的小波方差
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:1.7
- 作者:
Rodney V. Fonseca;Debashis Mondal;L. Zhang - 通讯作者:
L. Zhang
Progress and prospects toward supramolecular bioactive ion transporters
超分子生物活性离子转运体的进展与前景
- DOI:
10.1039/d2cc06761g - 发表时间:
2023-01-01 - 期刊:
- 影响因子:4.200
- 作者:
Abhishek Mondal;Manzoor Ahmad;Debashis Mondal;Pinaki Talukdar - 通讯作者:
Pinaki Talukdar
PAC Guarantees and Effective Algorithms for Detecting Novel Categories
PAC 保证和检测新类别的有效算法
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Si Liu;Risheek Garrepalli;Dan Hendrycks;Alan Fern;Debashis Mondal;Thomas G. Dietterich - 通讯作者:
Thomas G. Dietterich
Debashis Mondal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Debashis Mondal', 18)}}的其他基金
Distance-Based Analysis for Complex High-Dimensional Data
复杂高维数据的基于距离的分析
- 批准号:
2113771 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Distance-Based Analysis for Complex High-Dimensional Data
复杂高维数据的基于距离的分析
- 批准号:
2217007 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Markov Random Fields, Geostatistics and Matrix-Free Computation
马尔可夫随机场、地统计学和无矩阵计算
- 批准号:
1916448 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
2016 International Indian Statistical Association conference `Statistical and Data Sciences: A Key to Healthy People, Planet and Prosperity'
2016 年国际印度统计协会会议“统计和数据科学:人类健康、地球和繁荣的关键”
- 批准号:
1636648 - 财政年份:2016
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
CAREER: New Directions in Spatial Statistics
职业:空间统计的新方向
- 批准号:
1519890 - 财政年份:2014
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
CAREER: New Directions in Spatial Statistics
职业:空间统计的新方向
- 批准号:
1254840 - 财政年份:2013
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Connecting Markov Random Fields with Geostatistical Models
连接马尔可夫随机场与地统计模型
- 批准号:
0906300 - 财政年份:2009
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Adaptive Gaussian Markov Random Fields for Large-scale Discrete Optimization via Simulation
协作研究:通过仿真实现大规模离散优化的自适应高斯马尔可夫随机场
- 批准号:
2243210 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Scalable Inference for Spatio-Temporal Markov Random Fields
合作研究:CDS
- 批准号:
2152777 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Collaborative Research: CDS&E: Scalable Inference for Spatio-Temporal Markov Random Fields
合作研究:CDS
- 批准号:
2152776 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Markov Random Fields, Geostatistics and Matrix-Free Computation
马尔可夫随机场、地统计学和无矩阵计算
- 批准号:
1916448 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Adaptive Gaussian Markov Random Fields for Large-scale Discrete Optimization via Simulation
协作研究:通过仿真实现大规模离散优化的自适应高斯马尔可夫随机场
- 批准号:
1854659 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Adaptive Gaussian Markov Random Fields for Large-scale Discrete Optimization via Simulation
协作研究:通过仿真实现大规模离散优化的自适应高斯马尔可夫随机场
- 批准号:
1854562 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Entropy for Hidden Markov Processes and Markov Random Fields
隐马尔可夫过程和马尔可夫随机场的熵
- 批准号:
261611-2012 - 财政年份:2016
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Entropy for Hidden Markov Processes and Markov Random Fields
隐马尔可夫过程和马尔可夫随机场的熵
- 批准号:
261611-2012 - 财政年份:2015
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Entropy for Hidden Markov Processes and Markov Random Fields
隐马尔可夫过程和马尔可夫随机场的熵
- 批准号:
261611-2012 - 财政年份:2014
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Entropy for Hidden Markov Processes and Markov Random Fields
隐马尔可夫过程和马尔可夫随机场的熵
- 批准号:
261611-2012 - 财政年份:2013
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual