Random Systems from Symmetric Functions and Vertex Models
对称函数和顶点模型的随机系统
基本信息
- 批准号:2153869
- 负责人:
- 金额:$ 32.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Modern probability theory is an area of pure mathematics instrumental in the growing understanding of natural and social reality. The project studies complex random systems motivated by real-world questions, including the structure of ice and other condensed matter, magnetism, quantum systems, polymers, thermodynamics, and traffic models. The PI aims to discover and analyze systems living in discrete space that capture the essential large-scale and long-time physical phenomena, yet are "integrable", that is, simple enough for exact mathematical treatment. The analysis of integrable random systems is powered by explicit formulas and various symmetries coming from algebraic structures. Of special interest are time-dependent irreversible systems and models with impurities displaying a wide range of conjecturally universal behavior. The project provides research opportunities for graduate students as well as training activities through organization of summer school on integrable probability. The project revolves around new and known integrable stochastic systems whose structure is accessible through the Yang-Baxter equation or symmetric functions. The scope of the studied models includes interacting particle systems on the one-dimensional lattice with local or global interaction (asymmetric simple exclusion process and discrete analogs of the Dyson Brownian motion, respectively), random tilings, and other statistical mechanical systems. The goals are three-fold: (1) discover new models with integrable structure (such as q- and Macdonald analogs of Dyson Brownian motion); (2) find previously overlooked symmetries in well-known models (such as time-reversal symmetries in particle systems with arbitrary initial data); and (3) probe new asymptotic phenomena and establish their universality (such as inhomogeneous deformations of pure Gibbs states and the Gaussian Free Field). The goals will be achieved by finding and analyzing exact formulas for moments and correlations (with the help of symmetric functions and vertex models), and also by developing distributional symmetries using Markov maps, or by introducing many inhomogeneous parameters into the system.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代概率论是纯数学的一个领域,有助于人们对自然和社会现实的理解。该项目研究由现实世界问题激发的复杂随机系统,包括冰和其他凝聚态物质的结构,磁性,量子系统,聚合物,热力学和交通模型。PI旨在发现和分析生活在离散空间中的系统,这些系统捕获了基本的大尺度和长时间物理现象,但又是“可积的”,也就是说,足够简单,可以进行精确的数学处理。可积随机系统的分析由来自代数结构的明确公式和各种对称性提供动力。特别令人感兴趣的是时间依赖的不可逆系统和模型与杂质显示了广泛的范围内普遍的行为。该项目为研究生提供研究机会,并通过组织可积概率暑期学校开展培训活动。该项目围绕新的和已知的可积随机系统,其结构是通过杨巴克斯特方程或对称函数访问。所研究的模型的范围包括相互作用的粒子系统的一维晶格与本地或全球的相互作用(非对称简单的排斥过程和离散的戴森布朗运动的类似物,分别),随机平铺,和其他统计力学系统。目标有三个方面:(1)发现具有可积结构的新模型(如戴森布朗运动的q-和麦克唐纳类似物);(2)在众所周知的模型中发现以前被忽视的对称性(如具有任意初始数据的粒子系统中的时间反演对称性);(3)探索新的渐近现象并建立它们的普适性(如纯吉布斯态和高斯自由场的非均匀变形)。这些目标将通过寻找和分析矩和相关性的精确公式来实现(在对称函数和顶点模型的帮助下),并且还通过使用马尔可夫映射开发分布对称性,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Asymptotics of noncolliding q-exchangeable random walks
非碰撞 q-可交换随机游走的渐近
- DOI:10.1088/1751-8121/acedda
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Petrov, Leonid;Tikhonov, Mikhail
- 通讯作者:Tikhonov, Mikhail
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leonid Petrov其他文献
Rewriting History in Integrable Stochastic Particle Systems
- DOI:
10.1007/s00220-024-05189-y - 发表时间:
2024-11-29 - 期刊:
- 影响因子:2.600
- 作者:
Leonid Petrov;Axel Saenz - 通讯作者:
Axel Saenz
$\mathfrak{sl}(2)$ operators and Markov processes on branching graphs
- DOI:
10.1007/s10801-012-0420-y - 发表时间:
2013-01-08 - 期刊:
- 影响因子:0.900
- 作者:
Leonid Petrov - 通讯作者:
Leonid Petrov
Coarsening Model on $${\mathbb{Z}^{d}}$$ with Biased Zero-Energy Flips and an Exponential Large Deviation Bound for ASEP
- DOI:
10.1007/s00220-018-3180-2 - 发表时间:
2018-06-18 - 期刊:
- 影响因子:2.600
- 作者:
Michael Damron;Leonid Petrov;David Sivakoff - 通讯作者:
David Sivakoff
Leonid Petrov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leonid Petrov', 18)}}的其他基金
Workshop on Representation Theory, Combinatorics, and Geometry
表示论、组合学和几何研讨会
- 批准号:
1839534 - 财政年份:2018
- 资助金额:
$ 32.07万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Integrable Probability
FRG:协作研究:可积概率
- 批准号:
1664617 - 财政年份:2017
- 资助金额:
$ 32.07万 - 项目类别:
Continuing Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“阳化气、阴成形”理论探讨龟鹿二仙胶调控 HIF-1α/Systems Xc-通路抑制铁死亡治疗少弱精子症的作用机理
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
- 批准号:31971398
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
Pluriharmonic maps into a compact symmetric space and integrable systems
多谐波映射到紧对称空间和可积系统
- 批准号:
22K03293 - 财政年份:2022
- 资助金额:
$ 32.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quasilinear symmetric hyperbolic-hyperbolic systems of second or mixed order, with applications to relativistic fluid dynamics
二阶或混合阶拟线性对称双曲-双曲系统,及其在相对论流体动力学中的应用
- 批准号:
423781085 - 财政年份:2019
- 资助金额:
$ 32.07万 - 项目类别:
Research Grants
Realization of PT-symmetric quantum optical systems towards innovative quantum state control
实现PT对称量子光学系统以实现创新的量子态控制
- 批准号:
18K18733 - 财政年份:2018
- 资助金额:
$ 32.07万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Parity-Time Symmetric Wireless Telemetry Systems for Implantable Microsensors
用于植入式微传感器的奇偶时间对称无线遥测系统
- 批准号:
1917678 - 财政年份:2018
- 资助金额:
$ 32.07万 - 项目类别:
Standard Grant
Parity-Time Symmetric Wireless Telemetry Systems for Implantable Microsensors
用于植入式微传感器的奇偶时间对称无线遥测系统
- 批准号:
1711409 - 财政年份:2017
- 资助金额:
$ 32.07万 - 项目类别:
Standard Grant
New Nonactive-type Upper Limb Rehabilitation Systems That Introduced Ipsilateral-Type and Mirror-Symmetric-Type Non-paralyzed Side Assistance
新型非活动型上肢康复系统,引入同侧型和镜像对称型非瘫痪侧面辅助
- 批准号:
16K01586 - 财政年份:2016
- 资助金额:
$ 32.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combinatorial rigidity, symmetric geometric constraint systems, and applications
组合刚度、对称几何约束系统及应用
- 批准号:
EP/M013642/1 - 财政年份:2015
- 资助金额:
$ 32.07万 - 项目类别:
Research Grant
Stabilization of Periodic Regimes in Symmetric Systems with Memory via Time-Delayed Feedback Control
通过时滞反馈控制稳定具有记忆的对称系统中的周期性状态
- 批准号:
1413223 - 财政年份:2014
- 资助金额:
$ 32.07万 - 项目类别:
Standard Grant
Hermite-symmetric subcarrier coded OFDM systems with adaptive control based on theoretical analysis
基于理论分析的自适应控制Hermite对称子载波编码正交频分复用系统
- 批准号:
24560448 - 财政年份:2012
- 资助金额:
$ 32.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quasi-symmetric rigidity in smooth dynamical systems
光滑动力系统中的拟对称刚度
- 批准号:
387658-2010 - 财政年份:2011
- 资助金额:
$ 32.07万 - 项目类别:
Postdoctoral Fellowships