Quasilinear symmetric hyperbolic-hyperbolic systems of second or mixed order, with applications to relativistic fluid dynamics
二阶或混合阶拟线性对称双曲-双曲系统,及其在相对论流体动力学中的应用
基本信息
- 批准号:423781085
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project characterizes and studies two classes of quasilinear systems of dissipative partial differential equations which are hyperbolic regarding both their leading second order and their first order parts. Applications of both classes occur notably in dissipative relativistic fluid dynamics (DRFD). In the first phase of the project, we successfully identified structural features that make such "symmetric hyperbolic-hyperbolic" systems dissipative in the sense that their linearizations at homogeneous states enjoy decay in L2 based Sobolev spaces; during that step, the scope of the project widened, as these criteria cover broader classes of models than we had foreseen, notably allowing for situations that do not fall under the Hughes-Kato-Marsden framework. The purpose of the work planned for the second phase consists in establishing asymptotic stability in the quasilinear contexts. As we do no longer assume the definiteness encoded in the Hughes-Kato-Marsden condition, this will require combining the dissipativity conditions with the pseudo- and paradifferential calculus of Hörmander, Bony and Meyer used in the spirit of Taylor and Metivier. The resulting general findings should allow us to generalize Sroczinski's theorems on the global existence and long-time behavior of solutions to certain causal descriptions of DRFD to a broad class of such formulations ('relativistic Navier-Stokes').
本项目刻画和研究了两类拟线性耗散偏微分方程组,这两类方程组的首项二阶和首项一阶都是双曲的。这两类的应用发生显着耗散相对论流体动力学(DRFD)。在该项目的第一阶段,我们成功地确定了使这种"对称双曲-双曲"系统耗散的结构特征,即它们在齐次状态下的线性化在基于L2的Sobolev空间中衰减;在这一步骤中,项目的范围扩大了,因为这些标准涵盖了比我们预期的更广泛的模型类别,特别是考虑到不属于休斯-加藤-马斯登框架的情况。计划在第二阶段的工作的目的在于建立在准线性的背景下的渐近稳定性。由于我们不再假设休斯-加藤-马斯登条件中的确定性,这就需要将耗散性条件与霍曼德、博尼和迈耶的伪微分和仿微分结合起来,霍曼德、博尼和迈耶的伪微分和仿微分是按照泰勒和梅蒂维耶的精神使用的。由此产生的一般结果应该使我们能够推广Sroczinski定理的整体存在性和长期行为的解决方案,某些因果关系的描述DRFD广泛的一类这样的配方('相对论Navier-Stokes')。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Heinrich Freistühler其他文献
Professor Dr. Heinrich Freistühler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Heinrich Freistühler', 18)}}的其他基金
Stability of diffuse fluidic phase boundaries
扩散流体相边界的稳定性
- 批准号:
167159088 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Priority Programmes
Nicht-strikte Hyperbolizität am Beispiel der Gleichungen der Magnetohydrodynamik: Riemannsches Anfangswertproblem, Langzeitstabilität nichtlinearer Wellen und Limes verschwindender Dissipation
以磁流体动力学方程为例的非严格双曲性:黎曼初值问题、非线性波的长期稳定性和消失耗散的极限
- 批准号:
5383049 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Priority Programmes
Stability of Shock Waves under Hyperbolic Dissipation
双曲线耗散下冲击波的稳定性
- 批准号:
526003069 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
相似海外基金
Polynomial Interpolation, Symmetric Ideals, and Lefschetz Properties
多项式插值、对称理想和 Lefschetz 属性
- 批准号:
2401482 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Developing Advanced Cryptanalysis Techniques for Symmetric-key Primitives with Real-world Public-key Applications
使用现实世界的公钥应用开发对称密钥原语的高级密码分析技术
- 批准号:
24K20733 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Symmetric representation and the categorification of cluster structure on non-orientable surfaces
不可定向表面簇结构的对称表示和分类
- 批准号:
24K06666 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Topology, Spectral Geometry, and Arithmetic of Locally Symmetric Spaces
职业:拓扑、谱几何和局部对称空间算术
- 批准号:
2338933 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Distributed Symmetric Key Exchange (DSKE) Network
分布式对称密钥交换 (DSKE) 网络
- 批准号:
10077122 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
Analysis of local optical resonance effects due to the structural symmetric breakdown
结构对称击穿引起的局部光学共振效应分析
- 批准号:
23H01847 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Combinatorial structures appearing in representation theory of quantum symmetric subalgebras, and their applications
量子对称子代数表示论中出现的组合结构及其应用
- 批准号:
22KJ2603 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: Theoretical and Numerical Investigation of Symmetric Mass Generation
职业:对称质量生成的理论和数值研究
- 批准号:
2238360 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
RUI: Extended Metal Atom Chain Complexes of Fe and Co Supported by a C3 Symmetric, Scaffolded Ligand Platform
RUI:C3 对称支架配体平台支持的 Fe 和 Co 的延伸金属原子链配合物
- 批准号:
2245569 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant