Geometry and Asymptotics of Schubert Polynomials, Graph Colorings, and Flows on Graphs
舒伯特多项式的几何和渐近、图着色和图流
基本信息
- 批准号:2154019
- 负责人:
- 金额:$ 20.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Three fundamental and challenging problems in mathematics inspired from real-world activities are to count the number of ways of transporting goods through a network, sorting a list of tasks, and scheduling jobs to time slots. Some instances of these counting problems are difficult to count exactly and one can instead study bounds, asymptotics, and large-scale behaviors of these numbers as well as using geometric structures encoding the objects that are counted. Abstractly these problems can be studied with the following mathematical objects: "integer flows on a graph", "Schubert polynomials of permutations", and "graph vertex colorings", respectively that have connections to other fields of mathematics and other areas like computer science, and physics.More concretely, this project studies problems in enumerative, algebraic, and asymptotic combinatorics with connections to representation theory and geometry. The project has three parts. The first part is about finding a ¨q-analogue¨ of a constant term identity of Zeilberger to compute volumes of flow polytopes and establishing a connection between this identity and the famous Selberg integral. The second part is about studying the large-scale behavior of Schubert and Grothendieck polynomials using existing combinatorial models like rc-graphs, bumpless pipe dreams, and excited diagrams. The last part is about studying chromatic symmetric functions of Dyck paths, which are the object of the famous Stanley--Stembridge--Shareshian--Wachs conjecture. The PI will study the Newton polytope, Lorentzian property, and connections to q-rook theory of these symmetric functions. Students will be trained during the course of this project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
受现实世界活动启发,数学中的三个基本和具有挑战性的问题是计算通过网络运输货物的方式的数量,对任务列表进行排序,以及将作业调度到时间段。这些计数问题的一些实例很难准确计数,人们可以研究这些数字的界、渐近性和大规模行为,以及使用编码被计数对象的几何结构。抽象地说,这些问题可以用下列数学对象来研究:“图上的整数流”、“置换的舒伯特多项式”和“图的顶点着色”,它们分别与其他数学领域和其他领域如计算机科学和物理有关。更具体地说,这个项目研究与表示理论和几何有关的计数、代数和渐近组合学中的问题。该项目包括三个部分。第一部分是关于寻找Zeilberger常数项恒等式的q-模拟来计算流动多面体的体积,并建立该恒等式与著名的Selberg积分之间的联系。第二部分利用已有的组合模型,如RC图、无碰白日梦和激发图,研究了Schubert多项式和Grothendieck多项式的大规模行为。最后一部分研究了著名的Stanley-Stembridge-Shareshian-Wachs型猜想的对象--Dyck路的色对称函数。PI将学习牛顿多面体、洛伦兹性质,以及与这些对称函数的Q-rook理论的联系。学生将在这个项目的过程中接受培训。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generalized Pitman–Stanley flow polytopes
广义 Pitman—Stanley 流多面体
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Dugan, William T.;Hegarty, Maura;Morales, Alejandro H.;Raymond, Annie
- 通讯作者:Raymond, Annie
Combinatorial and Algebraic Enumeration: a survey of the work of Ian P. Goulden and David M. Jackson
组合和代数枚举:Ian P. Goulden 和 David M. Jackson 工作综述
- DOI:10.5802/alco.269
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Foley, Angèle M.;Morales, Alejandro H.;Rattan, Amarpreet;Yeats, Karen
- 通讯作者:Yeats, Karen
Minimal skew semistandard Young tableaux and the Hillman–Grassl correspondence
最小倾斜半标准 Young 画面和 HillmanâGrassl 对应
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Morales, Alejandro H.;Panova, Greta;Park, GaYee
- 通讯作者:Park, GaYee
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alejandro Morales其他文献
The draft nuclear genome assembly of Eucalyptus pauciflora: new approaches to comparing de novo assemblies
少花桉核基因组组装草案:比较从头组装的新方法
- DOI:
10.1101/678730 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Weiwen Wang;Ashutosh Das;D. Kainer;Miriam Schalamun;Alejandro Morales;B. Schwessinger;R. Lanfear - 通讯作者:
R. Lanfear
Surgical Management of Triangular Fibrocartilage Complex Lesions: A Review of Outcomes
三角纤维软骨复合病变的手术治疗:结果回顾
- DOI:
10.1016/j.jhsg.2018.08.002 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Cory Demino;Alejandro Morales;J. Fowler - 通讯作者:
J. Fowler
Calidad en sitios web: análisis de la producción científica
现场网络校准:analisis de la producción científica
- DOI:
10.5281/zenodo.4029628 - 发表时间:
2020 - 期刊:
- 影响因子:4.2
- 作者:
Alejandro Morales;Rafael Pedraza;Lluís Codina - 通讯作者:
Lluís Codina
A dynamic model of potential growth of olive (<em>Olea europaea</em> L.) orchards
- DOI:
10.1016/j.eja.2015.12.006 - 发表时间:
2016-03-01 - 期刊:
- 影响因子:
- 作者:
Alejandro Morales;Peter A. Leffelaar;Luca Testi;Francisco Orgaz;Francisco J. Villalobos - 通讯作者:
Francisco J. Villalobos
The relationship between campus diversity, students' ethnic identity and college adjustment: a qualitative study.
校园多样性、学生民族认同与大学适应之间的关系:一项定性研究。
- DOI:
10.1037/1099-9809.13.2.104 - 发表时间:
2007 - 期刊:
- 影响因子:3.3
- 作者:
S. Santos;A. M. Ortiz;Alejandro Morales;Monica Rosales - 通讯作者:
Monica Rosales
Alejandro Morales的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alejandro Morales', 18)}}的其他基金
Conference: Combinatorial Algebra Meets Algebraic Combinatorics
会议:组合代数遇上代数组合学
- 批准号:
2348525 - 财政年份:2024
- 资助金额:
$ 20.56万 - 项目类别:
Standard Grant
Combinatorics of Skew Tableaux and Flow Polytopes
倾斜表格和流动多面体的组合
- 批准号:
1855536 - 财政年份:2019
- 资助金额:
$ 20.56万 - 项目类别:
Continuing Grant
相似海外基金
Conference: Asymptotics in Complex Geometry: A Conference in Memory of Steve Zelditch
会议:复杂几何中的渐进:纪念史蒂夫·泽尔迪奇的会议
- 批准号:
2348566 - 财政年份:2024
- 资助金额:
$ 20.56万 - 项目类别:
Standard Grant
Spectral Asymptotics of Laplace Eigenfunctions
拉普拉斯本征函数的谱渐近
- 批准号:
2422900 - 财政年份:2024
- 资助金额:
$ 20.56万 - 项目类别:
Standard Grant
Creating Hybrid Exponential Asymptotics for use with Computational Data
创建用于计算数据的混合指数渐近
- 批准号:
DP240101666 - 财政年份:2024
- 资助金额:
$ 20.56万 - 项目类别:
Discovery Projects
Asymptotics of Toeplitz determinants, soft Riemann-Hilbert problems and generalised Hilbert matrices (HilbertToeplitz)
Toeplitz 行列式的渐进性、软黎曼-希尔伯特问题和广义希尔伯特矩阵 (HilbertToeplitz)
- 批准号:
EP/X024555/1 - 财政年份:2023
- 资助金额:
$ 20.56万 - 项目类别:
Fellowship
Asymptotics and ergodicity of hypoelliptic random processes
亚椭圆随机过程的渐近性和遍历性
- 批准号:
2246549 - 财政年份:2023
- 资助金额:
$ 20.56万 - 项目类别:
Standard Grant
Geometric Scattering Theory, Resolvent Estimates, and Wave Asymptotics
几何散射理论、分辨估计和波渐近学
- 批准号:
DE230101165 - 财政年份:2023
- 资助金额:
$ 20.56万 - 项目类别:
Discovery Early Career Researcher Award
Dynamical and Spatial Asymptotics of Large Disordered Systems
大型无序系统的动力学和空间渐进
- 批准号:
2246664 - 财政年份:2023
- 资助金额:
$ 20.56万 - 项目类别:
Standard Grant
Mean Field Asymptotics in Statistical Inference: Variational Approach, Multiple Testing, and Predictive Inference
统计推断中的平均场渐进:变分方法、多重测试和预测推断
- 批准号:
2210827 - 财政年份:2022
- 资助金额:
$ 20.56万 - 项目类别:
Continuing Grant
Spectral Asymptotics of Laplace Eigenfunctions
拉普拉斯本征函数的谱渐近
- 批准号:
2204397 - 财政年份:2022
- 资助金额:
$ 20.56万 - 项目类别:
Standard Grant
Asymptotics of Positive Temperature Models From Statistical Mechanics
统计力学正温度模型的渐进性
- 批准号:
2230262 - 财政年份:2022
- 资助金额:
$ 20.56万 - 项目类别:
Standard Grant