Fluctuations in Polymers and Random Data Partial Differential Equations
聚合物的波动和随机数据偏微分方程
基本信息
- 批准号:2154090
- 负责人:
- 金额:$ 32.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will investigate the effect of random noise on idealized models of physical systems. The addition of random noise sometimes simplifies the analysis of complex systems, but can also fundamentally modify their behavior and give rise to unexpected phenomena. Both situations apply to the two classes of systems studied in this project: so-called random polymer models, which describe noisy, growing interfaces in condensed matter, and nonlinear differential equations that are used to model quantum and classical waves. The project will also use mathematical statistical physics more generally as a motivation to train undergraduate and graduate students in probability theory, an essential tool in modern computer science and artificial intelligence.More specifically, the aim is to develop robust tools to estimate the fluctuations of random polymers and related diffusion models, with the ultimate goal of extending results obtained by exact algebraic methods to broader classes of models where exact methods do not apply. Concerning nonlinear wave and Schroedinger equations, the project will study the evolution of the distribution of solutions for given random initial data, with special emphasis on extremal situations like small nonlinearity or small dispersion.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目将研究随机噪声对物理系统理想化模型的影响。随机噪声的加入有时会简化复杂系统的分析,但也可能从根本上改变它们的行为并产生意想不到的现象。这两种情况都适用于本项目中研究的两类系统:所谓的随机聚合物模型,它描述了凝聚态物质中嘈杂的、不断增长的界面,以及用于模拟量子波和经典波的非线性微分方程。该项目还将更广泛地使用数理统计物理作为动机,培训本科生和研究生学习概率理论,概率理论是现代计算机科学和人工智能中的基本工具。更具体地说,该项目的目标是开发强大的工具来估计随机聚合物和相关扩散模型的波动,最终目标是将精确代数方法获得的结果推广到更广泛的模型类别,在这些模型中,精确方法不适用。关于非线性波动和薛定谔方程,该项目将研究给定随机初始数据的解的分布的演变,特别强调极端情况,如小非线性或小分散。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philippe Sosoe其他文献
Subdiffusivity of random walk on the 2D invasion percolation cluster
二维入侵渗流簇上随机游走的次扩散性
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
M. Damron;Jack Hanson;Philippe Sosoe - 通讯作者:
Philippe Sosoe
An estimate for the radial chemical distance in 2d critical percolation clusters
二维临界渗流簇中径向化学距离的估计
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:1.4
- 作者:
Philippe Sosoe;Lily Reeves - 通讯作者:
Lily Reeves
Fluctuations in first-passage
percolation
第一代渗透的波动
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Philippe Sosoe - 通讯作者:
Philippe Sosoe
Quasi-invariance of fractional Gaussian fields by the nonlinear wave equation with polynomial nonlinearity
具有多项式非线性的非线性波动方程的分数高斯场的拟不变性
- DOI:
10.57262/die/1594692055 - 发表时间:
2019 - 期刊:
- 影响因子:1.4
- 作者:
Philippe Sosoe;William J. Trenberth;Tianhao Xiao - 通讯作者:
Tianhao Xiao
Single eigenvalue fluctuations of general Wigner-type matrices
一般维格纳型矩阵的单特征值涨落
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:2
- 作者:
B. Landon;P. Lopatto;Philippe Sosoe - 通讯作者:
Philippe Sosoe
Philippe Sosoe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philippe Sosoe', 18)}}的其他基金
CAREER: Probability and Mathematical Statistical Mechanics
职业:概率和数学统计力学
- 批准号:
2238423 - 财政年份:2023
- 资助金额:
$ 32.15万 - 项目类别:
Continuing Grant
Disordered Systems and Quasi-Invariant Dynamics
无序系统和准不变动力学
- 批准号:
1811093 - 财政年份:2018
- 资助金额:
$ 32.15万 - 项目类别:
Standard Grant
相似海外基金
Identification and impact of polymers on stem cell products in an automated biomanufacturing platform
自动化生物制造平台中聚合物对干细胞产品的识别和影响
- 批准号:
10089013 - 财政年份:2024
- 资助金额:
$ 32.15万 - 项目类别:
Collaborative R&D
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 32.15万 - 项目类别:
Standard Grant
Assembly of Novel Branched Ionic Polymers: Chirality Induction and 2D Heterostructures
新型支化离子聚合物的组装:手性感应和二维异质结构
- 批准号:
2404081 - 财政年份:2024
- 资助金额:
$ 32.15万 - 项目类别:
Standard Grant
CAREER: Bottlebrush polymers as gateways to multiresponsive structures
职业:洗瓶刷聚合物作为多响应结构的门户
- 批准号:
2424452 - 财政年份:2024
- 资助金额:
$ 32.15万 - 项目类别:
Continuing Grant
Engineered redox polymers for catalytic water purification
用于催化水净化的工程氧化还原聚合物
- 批准号:
FT230100526 - 财政年份:2024
- 资助金额:
$ 32.15万 - 项目类别:
ARC Future Fellowships
Multifunctional polymers for combined algal inactivation and flocculation
用于组合藻类灭活和絮凝的多功能聚合物
- 批准号:
DE240100987 - 财政年份:2024
- 资助金额:
$ 32.15万 - 项目类别:
Discovery Early Career Researcher Award
Manufacturing Nanostructured Metallic Materials via 3D Printed Polymers
通过 3D 打印聚合物制造纳米结构金属材料
- 批准号:
DE240100917 - 财政年份:2024
- 资助金额:
$ 32.15万 - 项目类别:
Discovery Early Career Researcher Award
Sustainable, Low-cost and Durable Polymers for Green Hydrogen Conversion Technologies
用于绿色氢转换技术的可持续、低成本且耐用的聚合物
- 批准号:
EP/Y003543/1 - 财政年份:2024
- 资助金额:
$ 32.15万 - 项目类别:
Research Grant
A general strategy to synthesize semiconducting polymers within one minute
一分钟内合成半导体聚合物的一般策略
- 批准号:
24K08518 - 财政年份:2024
- 资助金额:
$ 32.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Elucidating the Impact of Side-Chain Topology on the Structure-Property Relationship in Bottlebrush Polymers
职业:阐明侧链拓扑对洗瓶刷聚合物结构-性能关系的影响
- 批准号:
2340664 - 财政年份:2024
- 资助金额:
$ 32.15万 - 项目类别:
Continuing Grant