Disordered Systems and Quasi-Invariant Dynamics
无序系统和准不变动力学
基本信息
- 批准号:1811093
- 负责人:
- 金额:$ 16.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Statistical physics provides an immensely useful set of tools to analyze natural phenomena involving complex interacting systems whose dynamics is difficult to describe exactly, but whose average behavior is amenable to analysis. It has found applications far beyond the realm of physics. To gain a deeper understanding of the mathematical underpinnings of this theory, it is necessary to study simplified models that nevertheless exhibit rich behavior similar to physical systems. This research project will study one class of such simplified discrete models, percolation models. In a separate topic area, probabilistic tools inspired by statistical physics will be applied to differential equations, to analyze the long-time behavior of their solutions.The project will study the behavior of metrics of physical significance, including the chemical distance and the effective resistance in critical random environments, such as Bernoulli percolation and oriented percolation in low dimensions. These metrics are of central importance for the study of random walks, for instance. Separately, the project will also study the behavior of nonlinear Hamiltonian partial differential and stochastic differential equations with random initial data, especially data chosen from invariant and quasi-invariant measures of Gibbs type. These objects allow for the construction of special solutions with improved long-time behavior compared to the generic case. The principal investigator will participate in the organization of summer schools, as well as the design and teaching of classes on statistical mechanics of both lattice systems like percolation, and continuous dynamical systems like partial differential equations with random data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
统计物理学提供了一套非常有用的工具来分析涉及复杂相互作用系统的自然现象,这些系统的动力学很难准确描述,但其平均行为是可以分析的。它已经发现了远远超出物理学领域的应用。为了更深入地理解这一理论的数学基础,有必要研究简化的模型,这些模型仍然表现出与物理系统相似的丰富行为。本研究项目将研究一类这样的简化离散模型--渗流模型。在另一个单独的主题区域,受统计物理启发的概率工具将应用于微分方程,以分析其解的长期行为。该项目将研究具有物理意义的指标的行为,包括化学距离和临界随机环境中的有效阻力,如伯努利渗流和低维定向渗流。例如,这些指标对于随机行走的研究至关重要。另外,该项目还将研究具有随机初始数据的非线性哈密顿偏微分方程和随机微分方程的行为,特别是从Gibbs类型的不变和准不变测量中选取的数据。与一般情况相比,这些对象允许构造具有改进的长期行为的特殊解决方案。首席研究员将参与暑期学校的组织以及统计力学课程的设计和教学,这些课程既包括渗流等晶格系统,也包括具有随机数据的偏微分方程等连续动力系统。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the two-dimensional hyperbolic stochastic sine-Gordon equation
- DOI:10.1007/s40072-020-00165-8
- 发表时间:2019-07
- 期刊:
- 影响因子:0
- 作者:Tadahiro Oh;T. Robert;Philippe Sosoe;Yuzhao Wang
- 通讯作者:Tadahiro Oh;T. Robert;Philippe Sosoe;Yuzhao Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philippe Sosoe其他文献
Subdiffusivity of random walk on the 2D invasion percolation cluster
二维入侵渗流簇上随机游走的次扩散性
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
M. Damron;Jack Hanson;Philippe Sosoe - 通讯作者:
Philippe Sosoe
An estimate for the radial chemical distance in 2d critical percolation clusters
二维临界渗流簇中径向化学距离的估计
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:1.4
- 作者:
Philippe Sosoe;Lily Reeves - 通讯作者:
Lily Reeves
Fluctuations in first-passage
percolation
第一代渗透的波动
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Philippe Sosoe - 通讯作者:
Philippe Sosoe
Quasi-invariance of fractional Gaussian fields by the nonlinear wave equation with polynomial nonlinearity
具有多项式非线性的非线性波动方程的分数高斯场的拟不变性
- DOI:
10.57262/die/1594692055 - 发表时间:
2019 - 期刊:
- 影响因子:1.4
- 作者:
Philippe Sosoe;William J. Trenberth;Tianhao Xiao - 通讯作者:
Tianhao Xiao
Single eigenvalue fluctuations of general Wigner-type matrices
一般维格纳型矩阵的单特征值涨落
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:2
- 作者:
B. Landon;P. Lopatto;Philippe Sosoe - 通讯作者:
Philippe Sosoe
Philippe Sosoe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philippe Sosoe', 18)}}的其他基金
CAREER: Probability and Mathematical Statistical Mechanics
职业:概率和数学统计力学
- 批准号:
2238423 - 财政年份:2023
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant
Fluctuations in Polymers and Random Data Partial Differential Equations
聚合物的波动和随机数据偏微分方程
- 批准号:
2154090 - 财政年份:2022
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“阳化气、阴成形”理论探讨龟鹿二仙胶调控 HIF-1α/Systems Xc-通路抑制铁死亡治疗少弱精子症的作用机理
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
- 批准号:31971398
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
Global solutions to the Cauchy problem for systems of quasi-linear wave equations satisfying the weak null condition
满足弱零条件的拟线性波动方程组柯西问题的全局解
- 批准号:
21K03324 - 财政年份:2021
- 资助金额:
$ 16.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
INTEGRABLE SYSTEMS OF PDE WITH QUASI-PERIODIC INITIAL DATA
具有准周期初始数据的偏微分方程可积系统
- 批准号:
RGPIN-2015-05140 - 财政年份:2019
- 资助金额:
$ 16.2万 - 项目类别:
Discovery Grants Program - Individual
Thermal behaviour of Silicon Solar cells in low-concentration quasi-static PV systems and impact of high temperature on their photoconversion performance
低聚光准静态光伏系统中硅太阳能电池的热行为及高温对其光转换性能的影响
- 批准号:
539210-2019 - 财政年份:2019
- 资助金额:
$ 16.2万 - 项目类别:
Engage Grants Program
Toward a Further Understanding and Improved Forecasting of Coastal Quasi-linear Convective Systems
进一步了解和改进沿海准线性对流系统的预报
- 批准号:
2000503 - 财政年份:2019
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant
Challenges to unexplored fields of research on the Cauchy problem for systems of quasi-linear wave equations--large-time behavior and regularity of solutions--
拟线性波动方程组柯西问题的未探索领域研究面临的挑战——解的大时间行为和规律性——
- 批准号:
18K03365 - 财政年份:2018
- 资助金额:
$ 16.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on discrete quasi-integrable systems
离散拟可积系统研究
- 批准号:
18H01127 - 财政年份:2018
- 资助金额:
$ 16.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
INTEGRABLE SYSTEMS OF PDE WITH QUASI-PERIODIC INITIAL DATA
具有准周期初始数据的偏微分方程可积系统
- 批准号:
RGPIN-2015-05140 - 财政年份:2018
- 资助金额:
$ 16.2万 - 项目类别:
Discovery Grants Program - Individual
Quasi-Monte Carlo Simulation for High-dimensional Systems with Complex Structure
复杂结构高维系统的准蒙特卡罗仿真
- 批准号:
18K04602 - 财政年份:2018
- 资助金额:
$ 16.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and application of theoretical methods for describing complicated and multiple electronic states of quasi-degenerate systems in solution
描述溶液中准简并系统复杂多电子态的理论方法的发展与应用
- 批准号:
18K05036 - 财政年份:2018
- 资助金额:
$ 16.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Concurrent Design of Quasi-Random Nanostructured Material Systems (NMS) and Nanofabrication Processes using Spectral Density Function
合作研究:使用谱密度函数并行设计准随机纳米结构材料系统(NMS)和纳米制造工艺
- 批准号:
1662509 - 财政年份:2017
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant