CAREER: Probability and Mathematical Statistical Mechanics
职业:概率和数学统计力学
基本信息
- 批准号:2238423
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-15 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Probability theory is the mathematical study of random processes. Mathematical statistical mechanics uses probability methods to understand physical phenomena such as transitions from solid to liquid and gaseous phases of matter, or the flow of fluid through a porous medium. This project will focus on two central problems in mathematical statistical mechanics relating to (a) distances in random landscapes and (b) the large scale behavior of a simplified model of a phase transition on high-dimensional lattices. Educational activities will include training of graduate students, organization of a summer school, and the development of probability and statistics learning materials suitable for teaching adults in correctional environments.The first direction of research will be investigation of universal fluctuations in stationary Kardar-Parisi-Zhang models using robust coupling techniques, focusing especially on interacting diffusions and polymer models. The goal is to investigate the extent to which coupling methods apply to general models expected to lie in the KPZ class. A first step will be the study, via analytic methods, of triangular systems relating to multi-path extensions of the O'Connell-Yor semi-discrete polymer, and their scaling at the edge of the limit shape. A second objective is the construction of scaling limits in high dimensional percolation, including joint scaling limits of distances in high dimensional percolation. One goal is to obtain the joint scaling limit of distances to the origin for collections of points at macroscopic distance. This is expected to match the corresponding limit for branching random walk. Another scaling limit of interest is that of the cluster measure. These investigations will be enabled by cluster extension and decoupling techniques akin to those existing for 2-dimensional percolation, but which nonetheless rest on completely different mechanisms in high dimensions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
概率论是随机过程的数学研究。数理统计力学使用概率方法来理解物理现象,例如物质从固态到液态和气态的转变,或者流体通过多孔介质的流动。这个项目将集中在数学统计力学的两个中心问题,涉及(a)随机景观的距离和(B)高维晶格上相变的简化模型的大尺度行为。教育活动将包括培养研究生,组织暑期学校,以及开发适合在教养环境中教授成年人的概率和统计学习材料。研究的第一个方向将是使用鲁棒耦合技术调查固定的Kardar-Parisi-Zhang模型中的普遍波动,特别关注相互作用扩散和聚合物模型。我们的目标是调查耦合方法在何种程度上适用于一般模型,预计在于KPZ类。第一步将是研究,通过分析方法,三角系统有关的多路径扩展的O 'Connell-Yor半离散聚合物,和他们的缩放在边缘的极限形状。第二个目标是在高维渗流的标度限制,包括联合标度限制的距离在高维渗流的建设。一个目标是获得宏观距离处的点集合到原点的距离的联合缩放限制。预计这将与分支随机游走的相应限制相匹配。另一个令人感兴趣的缩放限制是聚类度量。这些研究将通过类似于现有的二维渗流的集群扩展和解耦技术来实现,但它们仍然依赖于完全不同的高维机制。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philippe Sosoe其他文献
Subdiffusivity of random walk on the 2D invasion percolation cluster
二维入侵渗流簇上随机游走的次扩散性
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
M. Damron;Jack Hanson;Philippe Sosoe - 通讯作者:
Philippe Sosoe
An estimate for the radial chemical distance in 2d critical percolation clusters
二维临界渗流簇中径向化学距离的估计
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:1.4
- 作者:
Philippe Sosoe;Lily Reeves - 通讯作者:
Lily Reeves
Fluctuations in first-passage
percolation
第一代渗透的波动
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Philippe Sosoe - 通讯作者:
Philippe Sosoe
Quasi-invariance of fractional Gaussian fields by the nonlinear wave equation with polynomial nonlinearity
具有多项式非线性的非线性波动方程的分数高斯场的拟不变性
- DOI:
10.57262/die/1594692055 - 发表时间:
2019 - 期刊:
- 影响因子:1.4
- 作者:
Philippe Sosoe;William J. Trenberth;Tianhao Xiao - 通讯作者:
Tianhao Xiao
Single eigenvalue fluctuations of general Wigner-type matrices
一般维格纳型矩阵的单特征值涨落
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:2
- 作者:
B. Landon;P. Lopatto;Philippe Sosoe - 通讯作者:
Philippe Sosoe
Philippe Sosoe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philippe Sosoe', 18)}}的其他基金
Fluctuations in Polymers and Random Data Partial Differential Equations
聚合物的波动和随机数据偏微分方程
- 批准号:
2154090 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Disordered Systems and Quasi-Invariant Dynamics
无序系统和准不变动力学
- 批准号:
1811093 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
Integrable Probability and Universality in Mathematical Physics and Machine Learning
数学物理和机器学习中的可积概率和普适性
- 批准号:
RGPIN-2022-04106 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Integrable Probability and Universality in Mathematical Physics and Machine Learning
数学物理和机器学习中的可积概率和普适性
- 批准号:
DGECR-2022-00450 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Launch Supplement
Development of mathematical model of thermo-fluid phenomena in microchannel with stochastic connections using determinism and probability theory
使用确定论和概率论开发具有随机连接的微通道中热流体现象的数学模型
- 批准号:
22K18769 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Workshops in Geometry and Mathematical Physics and in Probability and Statistics
几何和数学物理以及概率和统计研讨会
- 批准号:
2201218 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Cornell 7th Conference on Analysis, Probability, and Mathematical Physics on Fractals
康奈尔大学第七届分形分析、概率和数学物理会议
- 批准号:
2000148 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Sixth Cornell Conference on Analysis, Probability, and Mathematical Physics on Fractals
第六届康奈尔分形分析、概率和数学物理会议
- 批准号:
1700187 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Mathematical Finance, Probability, and Partial Differential Equations Conference
数学金融、概率和偏微分方程会议
- 批准号:
1713013 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Questions in Probability Relating to Mathematical Finance
与数学金融相关的概率问题
- 批准号:
1612758 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Bridging across mathematical analysis, probability and materials mechanics for a better modeling of martensitic microstructure and defects.
跨越数学分析、概率和材料力学,更好地建模马氏体微观结构和缺陷。
- 批准号:
16K21213 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Cornell's Fifth Conference on Analysis, Probability and Mathematical Physics on Fractals
康奈尔大学第五届分形分析、概率和数学物理会议
- 批准号:
1361934 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant