CAS: Synthetic Entries to ETM with M-Ligand Multiple Bonds and Their Role in Stoichiometric and Catalytic Carbon-Hydrogen Activation and Functionalization of Volatile Alkanes
CAS:具有 M 配体多重键的 ETM 合成条目及其在挥发性烷烃的化学计量和催化碳氢活化和官能化中的作用
基本信息
- 批准号:2154620
- 负责人:
- 金额:$ 52.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With the support of the Chemical Synthesis (SYN) program in the Division of Chemistry, Professor Daniel J. Mindiola of the University of Pennsylvania will study the fundamental reactivity of the most abundant and volatile hydrocarbons such as methane, ethane, and propane under mild conditions and with zero emission of carbon dioxide. The project will establish new strategies to convert natural resources such as methane and ethane, the main components of natural and shale gases, into more value-added materials using earth-abundant base metals such as titanium, vanadium, and niobium, among others. One main target is to convert these alkanes into olefins; molecules that are industrial building blocks due to their use in the design of polymers, adhesives, detergents, and many other value-added chemicals that are routinely used commercially and in the household. Because of their volatility and limited storage capacity available, these natural resources are routinely being flared at staggering rates, so their combustion as well as their direct release into our atmosphere play a tremendous role in our fragile environment. Our main objective will be to selectively and controllably activate these alkanes using compounds that contain highly polar metal-carbon or metal-nitrogen multiple bonds, especially under mild conditions (room temperature), which is in contrast to industrial processes that tend to crack these alkanes under energy-intensive conditions. The research will also explore methods to construct well-defined metal-oxide, -sulfide or heavier chalcogenide (Se and Te) analogues, and to use these as supports for other metals ions to mimic how metal-oxide supports are used in conjunction with metal catalysts. Dr. Mindiola has been active with the ACS (American Chemical Society) and the ACS Scholars Program for nearly 20 years in order to promote diversity in the physical sciences. He is actively involved in promoting the science of methane and other “mysterious” hydrocarbons at the university level as well as in elementary and middle schools nationwide. His research group will also develop podcasts explaining their research projects but aimed to a broader audience. These short clips organized by students and postdoctoral associates will be available to the public through the YouTube group channel “MindiScience” with the aim to educate the community about flaring, catalysis, natural and shale gases, and their rich chemistry. The Mindiola research team will study the chemistry of early-transition metals ions composed of Ti, V, and Nb, and how these can promote the dehydrogenation of volatile hydrocarbons, selectively and under mild conditions, into olefins containing these unsaturation at the terminal positions. The PI’s research team will investigate these reactions via the development of metal-carbon, nitrogen, phosphorus, and chalcogen multiple bonds, and their reactivity with the alkanes. Using a combination of synthesis, reactivity, and mechanistic studies, the Penn team will explore optimized conditions for higher catalytic turnover using these base metal complexes. One specific reaction being targeted is the room temperature conversion of methane into an olefin using a well-defined metal complexes that can dehydrogenate the parent hydrocarbon into a parent Schrock-like carbene. Mindeola and co-workers also plan to synthesize archetypes of group 4 transition metal bischalcogenides and heterobimetallics. If successful, such chemistry is expected to have both real practical impact in making available valuable olefin building blocks and in providing an important contribution to sustainable chemistry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学合成(SYN)项目的支持下,宾夕法尼亚大学的丹尼尔·J·明迪奥拉教授将研究最丰富和挥发性碳氢化合物的基本反应性,如甲烷,乙烷和丙烷在温和的条件下,二氧化碳零排放。该项目将制定新的战略,将天然气和页岩气的主要成分甲烷和乙烷等自然资源转化为使用地球上丰富的贱金属(如钛、钒和铌等)的更具附加值的材料。一个主要目标是将这些烷烃转化为烯烃;由于其用于聚合物,粘合剂,洗涤剂和许多其他增值化学品的设计,这些分子是工业构件,这些化学品通常用于商业和家庭。由于其挥发性和有限的储存能力,这些自然资源经常以惊人的速度燃烧,因此它们的燃烧以及直接释放到我们的大气中对我们脆弱的环境起着巨大的作用。 我们的主要目标将是使用含有高极性金属-碳或金属-氮多重键的化合物选择性和可控地活化这些烷烃,特别是在温和条件下(室温),这与倾向于在能源密集型条件下裂解这些烷烃的工业过程相反。该研究还将探索构建定义明确的金属氧化物,硫化物或更重的硫属化物(Se和Te)类似物的方法,并将其用作其他金属离子的载体,以模拟金属氧化物载体如何与金属催化剂结合使用。 Mindiola博士积极参与ACS(美国化学学会)和ACS学者计划近20年,以促进物理科学的多样性。他积极参与在全国大学和中小学推广甲烷和其他“神秘”碳氢化合物的科学。他的研究小组还将开发播客,解释他们的研究项目,但针对更广泛的受众。这些由学生和博士后同事组织的短片将通过YouTube小组频道“MindiScience”向公众提供,旨在教育社区有关燃烧,催化,天然气和页岩气及其丰富的化学成分。Mindiola研究小组将研究由Ti,V和Nb组成的早期过渡金属离子的化学性质,以及这些离子如何在温和条件下选择性地促进挥发性烃类脱氢成在末端位置含有这些不饱和度的烯烃。 PI的研究小组将通过开发金属-碳,氮,磷和硫族元素多重键以及它们与烷烃的反应性来研究这些反应。使用合成,反应性和机理研究的组合,Penn团队将探索使用这些贱金属络合物进行更高催化转化的优化条件。目标的一个具体反应是使用明确定义的金属络合物将甲烷室温转化为烯烃,所述金属络合物可以将母体烃转化为母体Schrock-样卡宾。Mindeola和同事还计划合成第4族过渡金属双硫族化物和异双金属的原型。 如果成功的话,这种化学有望在提供有价值的烯烃结构单元和为可持续化学提供重要贡献方面产生真实的实际影响。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ligand non-innocence allows isolation of a neutral and terminal niobium nitride
配体非纯真允许分离中性和末端氮化铌
- DOI:10.1039/d2cc04696b
- 发表时间:2022
- 期刊:
- 影响因子:4.9
- 作者:Senthil, Shuruthi;Kwon, Seongyeon;Im, Hoyoung;Gau, Michael R.;Baik, Mu-Hyun;Mindiola, Daniel J.
- 通讯作者:Mindiola, Daniel J.
Metal‐Ligand Cooperativity to Assemble a Neutral and Terminal Niobium Phosphorus Triple Bond (Nb≡P)
金属-配体协同组装中性末端铌磷三键 (Nb-P)
- DOI:10.1002/anie.202212488
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Senthil, Shuruthi;Kwon, Seongyeon;Fehn, Dominik;Im, Hoyoung;Gau, Michael R.;Carroll, Patrick J.;Baik, Mu‐Hyun;Meyer, Karsten;Mindiola, Daniel J.
- 通讯作者:Mindiola, Daniel J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Mindiola其他文献
Daniel Mindiola的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Mindiola', 18)}}的其他基金
MRI: Acquisition of an X-ray Absorption Fine Structure (XAFS) source for Chemical and Spectroscopic Research and Training at the University of Pennsylvania
MRI:宾夕法尼亚大学购买 X 射线吸收精细结构 (XAFS) 源用于化学和光谱研究和培训
- 批准号:
2117783 - 财政年份:2021
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
Constructing Metal-Carbon Multiple Bonds for Dehydrogenation and Dehydrocoupling Reactions Involving Volatile Hydrocarbons
构建涉及挥发性碳氢化合物的脱氢和脱氢偶联反应的金属-碳多重键
- 批准号:
1764329 - 财政年份:2018
- 资助金额:
$ 52.5万 - 项目类别:
Continuing Grant
Metal-Ligand Multiple Bonds, Dehydrogenation Chemistry and Catalytic Transformations of Small Molecules Such as Methane, Ethane, Other Hydrocarbons, and N2
甲烷、乙烷、其他碳氢化合物和氮气等小分子的金属配体多重键、脱氢化学和催化转化
- 批准号:
1464659 - 财政年份:2015
- 资助金额:
$ 52.5万 - 项目类别:
Continuing Grant
Metal-Ligand Multiple Bonds and Their Role in Alkane Metathesis, Dehydrogenation and Group-Transfer Chemistry
金属配体多重键及其在烷烃复分解、脱氢和基团转移化学中的作用
- 批准号:
1413945 - 财政年份:2013
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
Metal-Ligand Multiple Bonds and Their Role in Alkane Metathesis, Dehydrogenation and Group-Transfer Chemistry
金属配体多重键及其在烷烃复分解、脱氢和基团转移化学中的作用
- 批准号:
1152123 - 财政年份:2012
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
Synthetic Entries to Early-Transition Metal Complexes Containing Terminal and Reactive Metal-Ligand Multiple Bonds
含有末端和活性金属-配体多重键的早期过渡金属配合物的合成
- 批准号:
0848248 - 财政年份:2009
- 资助金额:
$ 52.5万 - 项目类别:
Continuing Grant
CAREER: New Vistas in Early-Transition Metal Complexes Containing Metal-Ligand Multiple Bonds
职业生涯:含有金属-配体多重键的早期过渡金属配合物的新前景
- 批准号:
0348941 - 财政年份:2004
- 资助金额:
$ 52.5万 - 项目类别:
Continuing Grant
相似海外基金
Building Synthetic Biofilm Consortia for Polyfluorinated Chemicals Biodegradation
建立多氟化学品生物降解合成生物膜联盟
- 批准号:
2343831 - 财政年份:2024
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
Conference: 2024 Mammalian Synthetic Biology Workshop
会议:2024年哺乳动物合成生物学研讨会
- 批准号:
2412586 - 财政年份:2024
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
CAREER: Rational Design of Dual-Functional Photocatalysts for Synthetic Reactions: Controlling Photosensitization and Reaction with a Single Nanocrystal
职业:用于合成反应的双功能光催化剂的合理设计:用单个纳米晶体控制光敏化和反应
- 批准号:
2339866 - 财政年份:2024
- 资助金额:
$ 52.5万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanisms of community coalescence in synthetic microbiomes
合作研究:合成微生物组中群落合并的机制
- 批准号:
2328529 - 财政年份:2024
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
Collaborative Research: Mechanisms of community coalescence in synthetic microbiomes
合作研究:合成微生物组中群落合并的机制
- 批准号:
2328528 - 财政年份:2024
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 52.5万 - 项目类别:
Collaborative R&D
22BBSRC-NSF/BIO: A synthetic pyrenoid to guide the engineering of enhanced crops
22BBSRC-NSF/BIO:指导改良作物工程的合成核糖体
- 批准号:
BB/Y000323/1 - 财政年份:2024
- 资助金额:
$ 52.5万 - 项目类别:
Research Grant
EPSRC-SFI: Supercoiling-driven gene control in synthetic DNA circuits
EPSRC-SFI:合成 DNA 电路中超螺旋驱动的基因控制
- 批准号:
EP/V027395/2 - 财政年份:2024
- 资助金额:
$ 52.5万 - 项目类别:
Research Grant
Genetic targeting of a synthetic dye for voltage imaging of cerebellar Purkinje neurons during a tongue grasping task
一种合成染料的基因靶向,用于抓取舌头任务期间小脑浦肯野神经元的电压成像
- 批准号:
23K27147 - 财政年份:2024
- 资助金额:
$ 52.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
2022BBSRC-NSF/BIO: Self-replicating synthetic cells programmed by RNA
2022BBSRC-NSF/BIO:由RNA编程的自我复制合成细胞
- 批准号:
BB/Y000196/1 - 财政年份:2024
- 资助金额:
$ 52.5万 - 项目类别:
Research Grant