Hyperbolic Dynamics in Physical Systems and Ergodic Theory

物理系统中的双曲动力学和遍历理论

基本信息

  • 批准号:
    2154725
  • 负责人:
  • 金额:
    $ 16.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

This project concerns mathematical research in the fields of dynamical systems and ergodic theory as well as applications to mathematical physics. The research focuses on hyperbolic dynamical systems, where a small perturbation causes exponential uncertainty in both negative and positive time. Such systems appear in many real-world dynamics, for example in interacting particle systems. Much is known for hyperbolic systems of particles with low degrees of freedom and with hard ball interactions by models of mathematical billiards. An important goal of this research is to investigate the case of high degrees of freedom, which is more relevant for physical systems - ergodic theory provides an abstract point of view on dynamical systems by studying time and space averages instead of the local geometry. Another research goal is to extend the understanding of infinite ergodic theory and partial chaos by hyperbolic dynamics examples. Moreover, a summer school will be offered to advanced high school or first year undergraduate students and several research projects will involve both undergraduate and Ph.D. students.The research is comprised of three main parts. The first part concerns the study high dimensional billiards and deterministic walks. Topics that are well understood in two-dimensional billiards (complexity bounds, long flight times) will be investigated in higher dimensions. The second part is devoted to hyperbolic dynamics in physical systems. Based on earlier results by the investigator on smaller building blocks, larger systems of mass and energy transport will be studied. Both these parts make significant advances towards better mathematical models of high dimensional real-life dynamical systems. The third part is to study the role of hyperbolic dynamics in infinite ergodic theory: a field which is more suitable for some large physical systems than traditional finite ergodic theory. New examples of partial chaos will also be constructed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目涉及动力系统和遍历理论领域的数学研究,以及在数学物理中的应用。研究的重点是双曲动力系统,其中一个小的扰动在负时间和正时间都会引起指数不确定性。这样的系统出现在许多真实世界的动力学中,例如在交互的粒子系统中。众所周知,通过数学台球的模型,具有低自由度和硬球相互作用的双曲线粒子系统。这项研究的一个重要目标是研究与物理系统更相关的高自由度情况-遍历理论通过研究时间和空间平均而不是局部几何,提供了关于动力系统的抽象观点。另一个研究目标是通过双曲动力学实例扩展对无限遍历理论和部分混沌的理解。此外,将为高中生或一年级本科生提供暑期班,几个研究项目将包括本科生和博士生。研究由三个主要部分组成。第一部分是关于高维台球和确定性行走的研究。在二维台球中很好理解的主题(复杂性界限,长时间飞行)将在更高的维度上进行研究。第二部分致力于物理系统中的双曲动力学。根据研究人员早先关于较小积木的结果,将研究较大的质量和能量传输系统。这两个部分都朝着更好的高维真实动力系统的数学模型迈进了一大步。第三部分是研究双曲动力学在无限遍历理论中的作用:这个领域比传统的有限遍历理论更适合于一些大的物理系统。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marian Gidea其他文献

Symmetric planar central configurations of five bodies: Euler plus two
Global Diffusion on a Tight Three-Sphere

Marian Gidea的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marian Gidea', 18)}}的其他基金

Energy Growth, Dissipation, and Control in Hamiltonian Systems
哈密​​顿系统中的能量增长、耗散和控制
  • 批准号:
    2307718
  • 财政年份:
    2023
  • 资助金额:
    $ 16.42万
  • 项目类别:
    Standard Grant
Intergovernmental Mobility Assignment
政府间流动分配
  • 批准号:
    2149657
  • 财政年份:
    2021
  • 资助金额:
    $ 16.42万
  • 项目类别:
    Intergovernmental Personnel Award
Conference: A Broad Perspective on Finite and Infinite Dimensional Dynamical Systems'
会议:有限和无限维动力系统的广阔视角
  • 批准号:
    1700154
  • 财政年份:
    2017
  • 资助金额:
    $ 16.42万
  • 项目类别:
    Standard Grant
Large effects in dynamical systems
动力系统中的巨大影响
  • 批准号:
    1515851
  • 财政年份:
    2015
  • 资助金额:
    $ 16.42万
  • 项目类别:
    Standard Grant
RUI: Hamiltonian Instability
RUI:哈密顿不稳定性
  • 批准号:
    0601016
  • 财政年份:
    2006
  • 资助金额:
    $ 16.42万
  • 项目类别:
    Standard Grant

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Spatiotemporal Dynamics of Mitochondrial Populations: from Social to Physical Networks
线粒体群体的时空动态:从社会网络到物理网络
  • 批准号:
    2310229
  • 财政年份:
    2023
  • 资助金额:
    $ 16.42万
  • 项目类别:
    Continuing Grant
Study of physical measures for random non-hyperbolic dynamics
随机非双曲动力学的物理测量研究
  • 批准号:
    23K03188
  • 财政年份:
    2023
  • 资助金额:
    $ 16.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation of dynamics and physical chemistry of nanometals in atmospheric environments: Focusing on water solubility
大气环境中纳米金属的动力学和物理化学研究:关注水溶性
  • 批准号:
    22H03719
  • 财政年份:
    2022
  • 资助金额:
    $ 16.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A unified theory for perception of physical and social dynamics
物理和社会动态感知的统一理论
  • 批准号:
    2142269
  • 财政年份:
    2022
  • 资助金额:
    $ 16.42万
  • 项目类别:
    Standard Grant
Modelling gust-encounters on UAVs with cyber-physical fluid dynamics
利用网络物理流体动力学对无人机上的阵风遭遇进行建模
  • 批准号:
    RGPIN-2018-05168
  • 财政年份:
    2022
  • 资助金额:
    $ 16.42万
  • 项目类别:
    Discovery Grants Program - Individual
Linking dynamics to scaling laws in physical and biological systems
将动力学与物理和生物系统中的尺度定律联系起来
  • 批准号:
    RGPIN-2019-05443
  • 财政年份:
    2022
  • 资助金额:
    $ 16.42万
  • 项目类别:
    Discovery Grants Program - Individual
The Influence of Multi-Scale Dynamics on Physical and Behavioral Cellular Patterns
多尺度动力学对身体和行为细胞模式的影响
  • 批准号:
    DGECR-2022-00448
  • 财政年份:
    2022
  • 资助金额:
    $ 16.42万
  • 项目类别:
    Discovery Launch Supplement
Development of microscopy techniques to simultaneously visualize the dynamics of the structure and local physical properties of a single protein
开发显微镜技术以同时可视化单个蛋白质的结构动态和局部物理特性
  • 批准号:
    22K18943
  • 财政年份:
    2022
  • 资助金额:
    $ 16.42万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Nonlinear Dynamics with Applications to Physical Systems
非线性动力学及其在物理系统中的应用
  • 批准号:
    2206500
  • 财政年份:
    2022
  • 资助金额:
    $ 16.42万
  • 项目类别:
    Standard Grant
CPS: Small: Cyber-Physical Phases of Mixed Traffic with Modular & Autonomous Vehicles: Dynamics, Impacts and Management
CPS:小型:模块化混合流量的网络物理阶段
  • 批准号:
    2313578
  • 财政年份:
    2022
  • 资助金额:
    $ 16.42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了