Energy Growth, Dissipation, and Control in Hamiltonian Systems
哈密顿系统中的能量增长、耗散和控制
基本信息
- 批准号:2307718
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will enhance the foundational understanding of Dynamical Systems through the development of theories, models, and techniques that could potentially address a range of contemporary scientific and technological issues, such as production of sustainable energy and space exploration. The main objective of this research is to devise mechanisms to gain energy in mechanical systems subject to dissipation and forcing. The project will study mathematical models for energy harvesting devices, which convert external vibrations into electrical energy, and will optimize their energy output. It will also investigate the dynamics of comets, asteroids, and spacecraft, with applications to the design of fuel-efficient space missions. Partial support will be provided to graduate and undergraduate students, including members of underrepresented groups. The project will open new research directions in the study of Hamiltonian systems subject to general perturbations. It will advance the understanding of the Arnold diffusion phenomenon, describing that integrable Hamiltonian systems subject to small, generic, Hamiltonian perturbations, exhibit orbits along which the energy changes by a significant amount. The project will investigate this phenomenon in concrete systems, such as from celestial mechanics. It will also explore the case of perturbations given by conformally symplectic vector fields, which model the effect of dissipation. Additionally, the project will develop novel methods to use natural perturbations of a system as controllers, in order to drive the system from some given state to any desired state.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将通过理论、模型和技术的发展,提高对动力系统的基本理解,这些理论、模型和技术可能解决一系列当代科学和技术问题,如可持续能源的生产和空间探索。本研究的主要目的是设计在受耗散和强迫影响的机械系统中获得能量的机制。该项目将研究能量收集装置的数学模型,该装置将外部振动转换为电能,并将优化其能量输出。它还将研究彗星、小行星和航天器的动力学,并将其应用于节能太空任务的设计。将向研究生和本科生提供部分支持,包括代表性不足的群体的成员。该项目将为一般扰动下的哈密顿系统的研究开辟新的研究方向。它将促进对阿诺德扩散现象的理解,描述受小的、一般的、哈密顿扰动影响的可积哈密顿系统,呈现出能量变化显著的轨道。该项目将从天体力学等具体系统中研究这种现象。它还将探讨由共形辛向量场给出的扰动的情况,它模拟了耗散的影响。此外,该项目将开发新的方法来使用系统的自然扰动作为控制器,以驱动系统从某个给定状态到任何期望状态。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marian Gidea其他文献
Symmetric planar central configurations of five bodies: Euler plus two
- DOI:
10.1007/s10569-009-9243-0 - 发表时间:
2009-11-26 - 期刊:
- 影响因子:1.400
- 作者:
Marian Gidea;Jaume Llibre - 通讯作者:
Jaume Llibre
Global Diffusion on a Tight Three-Sphere
- DOI:
10.1007/s12346-015-0142-3 - 发表时间:
2015-04-25 - 期刊:
- 影响因子:2.100
- 作者:
Marian Gidea - 通讯作者:
Marian Gidea
Marian Gidea的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marian Gidea', 18)}}的其他基金
Hyperbolic Dynamics in Physical Systems and Ergodic Theory
物理系统中的双曲动力学和遍历理论
- 批准号:
2154725 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Intergovernmental Mobility Assignment
政府间流动分配
- 批准号:
2149657 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Intergovernmental Personnel Award
Conference: A Broad Perspective on Finite and Infinite Dimensional Dynamical Systems'
会议:有限和无限维动力系统的广阔视角
- 批准号:
1700154 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
基于FP-Growth关联分析算法的重症患者抗菌药物精准决策模型的构建和实证研究
- 批准号:2024Y9049
- 批准年份:2024
- 资助金额:100.0 万元
- 项目类别:省市级项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
- 批准号:
BB/X007669/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Sustainable Style for Clean Growth: Innovating Textile Production through Engineering Biology
清洁增长的可持续方式:通过工程生物学创新纺织品生产
- 批准号:
BB/Y007735/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
CAREER: Nanomechanics of Bacterial Mucoadhesion and Growth on Healthy and Diseased Human Gut Mucus
职业:健康和患病人类肠道粘液上细菌粘膜粘附和生长的纳米力学
- 批准号:
2338518 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Emergence of in-liquid structures in metallic alloys by nucleation and growth
职业:通过成核和生长在金属合金中出现液态结构
- 批准号:
2333630 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Doctoral Dissertation Research: Renewable Energy Transition and Economic Growth
博士论文研究:可再生能源转型与经济增长
- 批准号:
2342813 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
- 批准号:
2401507 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Elucidating the Correlative Interfacial Solvation, Nucleation, and Growth Processes in Battery Electrolytes
职业:阐明电池电解质中相关的界面溶剂化、成核和生长过程
- 批准号:
2339175 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: Understanding how hierarchical organization of growth plate stem cells controls skeletal growth
职业:了解生长板干细胞的分层组织如何控制骨骼生长
- 批准号:
2339761 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
EMBRACE-AGS-Growth: Diagnosing Kinematic Processes Responsible for Precipitation Distributions in Tropical Cyclones
EMBRACE-AGS-Growth:诊断热带气旋降水分布的运动过程
- 批准号:
2409475 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant