Hybrid Computational Models for Membrane-Protein Interfaces
膜-蛋白质界面的混合计算模型
基本信息
- 批准号:2154804
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
WIth support from the Chemical Theory, Models and Computational Methods program in the Division of Chemistry, Professor Qiang Cui of Boston University is developing effective computational methods for tackling problems that involve collective behaviors of proteins/peptides at the lipid membrane interface. These problems are difficult to study using existing computational methodologies due to the involvement of multiple length and time scales. Taking advantage of recent progress in machine learning (ML) techniques, Dr. Cui will aim to overcome these challenges to establish efficient and reliable computational models that enable the mechanistic analysis of protein phase separation at cell membrane surface and protein mediated membrane porations, which are critical in important biological processes such as cell signaling, viral infection and synaptic transmission. Cui will also engage in various education and out-reach activities to inspire students of broad backgrounds to pursue a career at the boundary between physical chemistry, computational science, and biology. At the undergraduate level, Professor Cui will endeavor to enhance the integration of computation and basic programming concepts into the chemistry curriculum at Boston University.To accomplish the research goals, the Cui team will effectively integrate recent advances in simulation methodologies in unique biophysical contexts. In one problem, Cui and co-workers will aim to understand how protein-membrane interactions modify the conformational and interaction properties of proteins in the context of liquid-liquid phase separation. The unique angle will be to develop a hybrid ML/MM model in which the protein and its interaction with the membrane environment are described using ML, trained with atomistic simulation data and a reference coarse-grained model; the advantage of this hybrid model is that many-body effects at the coarse-grained level are captured, a feature expected to be essential to the proper description of collective behaviors of proteins in different environments, including phase separation at or wetting of the lipid membrane. In another problem, the challenge is to understand the mechanism by which multiple types of peptides or protein motifs regulate membrane pores. The Cui group will combine finite temperature string and an ML approach to expand the list of collective variables automatically and systematically for evaluating the underlying minimum free energy pathways. The fundamental strategy of combining the strengths of global (string) and local (PIB) enhanced sampling techniques will be potentially applicable to a broad range of problems in which a minimal set of global progress variables is known ahead of time, yet important local degrees of freedom remain obscure.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学理论、模型和计算方法项目的支持下,波士顿大学崔强教授正在开发有效的计算方法,以解决涉及蛋白质/肽在脂质膜界面的集体行为的问题。这些问题是很难研究使用现有的计算方法,由于涉及多个长度和时间尺度。利用机器学习(ML)技术的最新进展,崔博士将致力于克服这些挑战,建立高效可靠的计算模型,从而实现细胞膜表面蛋白质相分离和蛋白质介导的膜穿孔的机制分析,这在重要的生物过程中至关重要,如细胞信号传导,病毒感染和突触传递。崔还将参与各种教育和外展活动,激励背景广泛的学生在物理化学、计算科学和生物学之间的边界从事职业。在本科阶段,崔教授将奋进于将计算和基本编程概念融入波士顿大学的化学课程。为了实现研究目标,崔教授团队将有效地将模拟方法的最新进展融入独特的生物物理背景。在一个问题中,Cui及其同事的目标是了解蛋白质-膜相互作用如何在液-液相分离的背景下改变蛋白质的构象和相互作用特性。独特的角度将是开发一个混合ML/MM模型,其中蛋白质及其与膜环境的相互作用使用ML描述,使用原子模拟数据和参考粗粒度模型进行训练;这种混合模型的优点是捕获了粗粒度级别的多体效应,这一特征对于正确描述蛋白质在不同环境中的集体行为是必不可少的,包括脂质膜处的相分离或脂质膜的润湿。在另一个问题中,挑战是了解多种类型的肽或蛋白质基序调节膜孔的机制。崔组将结合联合收割机有限温度弦和ML方法,以自动和系统地扩展集体变量列表,用于评估潜在的最小自由能路径。结合全局(字符串)和局部(PIB)增强采样技术的优势的基本策略将潜在地适用于广泛的问题,其中全局进度变量的最小集合是提前已知的,然而,重要的地方自由度仍然模糊不清。这个奖项反映了NSF的法定使命,并被认为是值得通过利用基金会的智力价值进行评估来支持的和更广泛的影响审查标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qiang Cui其他文献
A Case Study on Structural Optimization Design of Shock Absorber Brackets in Automobile Suspension
汽车悬架减振器支架结构优化设计实例
- DOI:
10.1109/access.2023.3334146 - 发表时间:
2023 - 期刊:
- 影响因子:3.9
- 作者:
Yan Liu;Lu Pan;Qiang Cui;Dongbo Meng - 通讯作者:
Dongbo Meng
Membrane remodeling and vesicle formation by biomolecular condensates: A coarse grained simulation study
- DOI:
10.1016/j.bpj.2022.11.562 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Sayantan Mondal;Qiang Cui - 通讯作者:
Qiang Cui
Selective and sensitive surface condensation driven by coupled phase behaviors of membrane and biopolymers
- DOI:
10.1016/j.bpj.2022.11.1247 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Zhuang Liu;Arun Yethiraj;Qiang Cui - 通讯作者:
Qiang Cui
Analysis and prediction of TetR allostery with machine learning methods and a statistical model
- DOI:
10.1016/j.bpj.2021.11.1317 - 发表时间:
2022-02-11 - 期刊:
- 影响因子:
- 作者:
Zhuang Liu;Megan Leander;Srivatsan Raman;Qiang Cui - 通讯作者:
Qiang Cui
Increase flavour quality of Sichuan pepper(<em>Zanthoxylum bungeanum</em> Maxim.)with optimized cleaning technology: Soaking and spraying
- DOI:
10.1016/j.lwt.2024.116971 - 发表时间:
2024-11-15 - 期刊:
- 影响因子:
- 作者:
Jiao Wang;Junzhe Wan;Xiaoyan Hou;Guanghui Shen;Shanshan Li;Qiang Cui;Jie Yu;Man Zhou;Jie Wang;Ran Ren;Wen Hu;Zhihua Li;Zhiqing Zhang - 通讯作者:
Zhiqing Zhang
Qiang Cui的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qiang Cui', 18)}}的其他基金
Multi-scale simulation methods for energy transduction and macromolecular assembly
能量转换和大分子组装的多尺度模拟方法
- 批准号:
1829555 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Multi-scale simulation methods for energy transduction and macromolecular assembly
能量转换和大分子组装的多尺度模拟方法
- 批准号:
1664906 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Development of multi-scale models for enzyme catalysis in complex environments
复杂环境中酶催化多尺度模型的开发
- 批准号:
1300209 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
New methods for treating electrostatics and adaptive partitioning in QM/MM simulations
QM/MM 模拟中处理静电和自适应分区的新方法
- 批准号:
0957285 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Theoretical Analysis of Molecular Oxygen Chemistry in Biological Systems
职业:生物系统中分子氧化学的理论分析
- 批准号:
0348649 - 财政年份:2004
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research of Proton Transfers in Enzymes: A Synergetic Theory-Experiment Approach
酶中质子转移的合作研究:理论-实验协同方法
- 批准号:
0314327 - 财政年份:2003
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Computational Multi-Models Enabled Design of Safe & Sustainable Multi-Component High-Entropy Coatings (M2DESCO)
计算多模型支持安全设计
- 批准号:
10110861 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
EU-Funded
CRII: AF: RUI: Algorithmic Fairness for Computational Social Choice Models
CRII:AF:RUI:计算社会选择模型的算法公平性
- 批准号:
2348275 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Conference: SICB 2024: Computational and Physical Models in Research and Teaching to Explore Form-Function Relationships
会议:SICB 2024:研究和教学中的计算和物理模型探索形式-功能关系
- 批准号:
2326876 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Studentship
Novel Hybrid Computational Models to Disentangle Complex Immune Responses
新型混合计算模型可解开复杂的免疫反应
- 批准号:
10794448 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Informing 4D flow MRI haemodynamic outputs with data science, mathematical models and scale-resolving computational fluid dynamics
通过数据科学、数学模型和尺度解析计算流体动力学为 4D 流 MRI 血液动力学输出提供信息
- 批准号:
EP/X028321/1 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Fellowship
Integrating Computational and Experimental Models to Predict Toxicity of the Pancreas
整合计算和实验模型来预测胰腺的毒性
- 批准号:
10576042 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Computational fluid dynamics analysis using sophisticated plant models towards the development of digital twins in greenhouse horticulture
使用复杂的植物模型进行计算流体动力学分析,以开发温室园艺中的数字孪生
- 批准号:
23K05477 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Data models for large aircraft aerodynamics using next-generation computational fluid dynamics
使用下一代计算流体动力学的大型飞机空气动力学数据模型
- 批准号:
2889801 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Studentship
Open-source Software Development Supplement for 3D quantitative analysisof mouse models of structural birth defects through computational anatomy
通过计算解剖学对结构性出生缺陷小鼠模型进行 3D 定量分析的开源软件开发补充
- 批准号:
10839199 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别: