Collaborative Research: SaTC: CORE: Small: Machine Learning for Cybersecurity: Robustness Against Concept Drift

协作研究:SaTC:核心:小型:网络安全机器学习:针对概念漂移的稳健性

基本信息

  • 批准号:
    2154873
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

A promising direction for cybersecurity is to use machine learning to detect threats and attacks. For instance, machine learning is currently used to detect computer viruses, malware, malicious mobile applications, spam email, and network intrusions. However, one fundamental challenge for using machine learning in this way is the problem of concept drift. Concept drift refers to the problem that threats change over time, and normal benign behavior changes over time, and as a result, machine learning algorithms rapidly degrade and become less effective as time passes. Empirically, concept drift is one of the main challenges that make it hard to apply machine learning more broadly in cybersecurity. This project will develop new methods tailored to the cybersecurity domain for addressing concept drift, and it will advance the state of knowledge on robustness against concept drift in cybersecurity. The project has the potential to improve cybersecurity protections for everyday people, including improving antivirus software, phishing detectors, fraud/scam detection, and more, thereby making the Internet safer for everyone.The team's approach is based on an understanding of the fundamental drivers of concept drift, including both gradual drift and emergence of entirely new types of threats. Threats can often be categorized into multiple categories. For instance, malware falls into many different "malware families". Each category may experience concept drift at a different rate. This provides an opportunity for new methods that take advantage of such differences across categories. To address the problem of categories that are experiencing rapid concept drift, the team plans to develop techniques to detect which categories are suffering from concept drift to the greatest degree and then select samples from those categories for human analysts to evaluate. For new types of threats, the team plans to develop techniques to identify samples from new categories so they can be submitted for human analysis. For categories that are experiencing gradual but sustained concept drift, the team plans to explore use of semi-supervised learning and pseudo labels to help the machine learning algorithm adapt to these changes in the data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
网络安全的一个有前途的方向是使用机器学习来检测威胁和攻击。例如,机器学习目前被用于检测计算机病毒、恶意软件、恶意移动应用程序、垃圾邮件和网络入侵。然而,以这种方式使用机器学习的一个基本挑战是概念漂移的问题。概念漂移指的是威胁会随着时间的推移而改变,正常的良性行为也会随着时间的推移而改变,因此机器学习算法会随着时间的推移而迅速退化,变得不那么有效。从经验上看,概念漂移是使机器学习难以更广泛地应用于网络安全的主要挑战之一。该项目将开发针对网络安全领域的新方法,以解决概念漂移问题,并将推进网络安全中对概念漂移的鲁棒性的知识状态。该项目有可能改善日常人们的网络安全保护,包括改进防病毒软件、网络钓鱼检测器、欺诈/骗局检测等,从而使互联网对每个人都更安全。该团队的方法是基于对概念漂移的基本驱动因素的理解,包括逐渐漂移和全新威胁类型的出现。威胁通常可以分为多个类别。例如,恶意软件分为许多不同的“恶意软件家族”。每个类别可能以不同的速度经历概念漂移。这为利用这些类别之间的差异的新方法提供了机会。为了解决正在经历快速概念漂移的类别的问题,该团队计划开发技术来检测哪些类别的概念漂移程度最大,然后从这些类别中选择样本供人类分析人员评估。对于新类型的威胁,该团队计划开发技术来识别新类别的样本,以便将其提交给人类分析。对于正在经历逐渐但持续的概念漂移的类别,该团队计划探索使用半监督学习和伪标签来帮助机器学习算法适应数据中的这些变化。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Continuous Learning for Android Malware Detection
  • DOI:
    10.48550/arxiv.2302.04332
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yizheng Chen;Zhoujie Ding;David A. Wagner
  • 通讯作者:
    Yizheng Chen;Zhoujie Ding;David A. Wagner
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Wagner其他文献

The Riemann Problem in Two Space Dimensions for a Single Conservation Law
Optimization of a Solver for Computational Materials and Structures Problems on NVIDIA Volta and AMD Instinct GPUs
NVIDIA Volta 和 AMD Instinct GPU 上计算材料和结构问题求解器的优化
Equivalence of the Euler and Lagrangian equations of gas dynamics for weak solutions
SYMMETRIC-HYPERBOLIC EQUATIONS OF MOTION FOR A HYPERELASTIC MATERIAL
超弹性材料的对称双曲运动方程
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Wagner
  • 通讯作者:
    David Wagner
Leadership 2.0: Engaging and Supporting Leaders in the Transition towards a Networked Organization
领导力 2.0:吸引和支持领导者向网络化组织转型

David Wagner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Wagner', 18)}}的其他基金

RCN: An International Network to Assess the Status of Insects
RCN:评估昆虫状况的国际网络
  • 批准号:
    2225092
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
REU Site: Summer Undergraduate Program in Engineering Research at Berkeley-Responsible Artificial Intelligence (SUPERB-RAI)
REU 网站:伯克利负责任人工智能工程研究暑期本科生项目 (SUPERB-RAI)
  • 批准号:
    1950668
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
TWC: Medium: Collaborative: Security and Privacy for Wearable and Continuous Sensing Platforms
TWC:媒介:协作:可穿戴和连续传感平台的安全和隐私
  • 批准号:
    1514457
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
TWC: Small: A Choice Architecture for Mobile Privacy and Security
TWC:小型:移动隐私和安全的选择架构
  • 批准号:
    1318680
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
TC: Small: Securing Web Software Systems
TC:小型:保护 Web 软件系统
  • 批准号:
    1018924
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CT-T: Collaborative Research: Complex, High-level, Integrated Properties for Security
CT-T:协作研究:复杂、高级、集成的安全属性
  • 批准号:
    0716715
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Dissertation Research: Systematics and Morphology of Metalmark Moths (Lepidoptera: Choreutidae)
论文研究:金斑蛾(鳞翅目:Choreutidae)的系统学和形态学
  • 批准号:
    0608399
  • 财政年份:
    2006
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CT-CS: A Center for Correct, Usable, Reliable, Auditable, and Transparent Elections (ACCURATE)
合作研究:CT-CS:正确、可用、可靠、可审计和透明选举的中心(准确)
  • 批准号:
    0524745
  • 财政年份:
    2005
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: Type Qualifiers for Software Security
协作研究:软件安全的类型限定符
  • 批准号:
    0430585
  • 财政年份:
    2004
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CAREER: Security in the Large: Gaining Assurance in Real-World Systems
职业:大范围的安全:在现实世界的系统中获得保证
  • 批准号:
    0093337
  • 财政年份:
    2001
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330941
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
  • 批准号:
    2413046
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
  • 批准号:
    2312057
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Investigation of Naming Space Hijacking Threat and Its Defense
协作研究:SaTC:核心:小型:命名空间劫持威胁及其防御的调查
  • 批准号:
    2317830
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
  • 批准号:
    2318843
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了