Noncommutative Analysis with Applications to Quantum Information Theory

非交换分析及其在量子信息论中的应用

基本信息

  • 批准号:
    2154903
  • 负责人:
  • 金额:
    $ 22.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Quantum information theory is a rapidly growing area studying how information is stored, processed and communicated under the laws of quantum mechanics. It aims to utilize quantum phenomena such as entanglement and coherence to gain substantial advantages in cryptography, communication, and computational power. To this end, developing mathematical tools to study the capability and limitations of quantum information processing is very much desired. Due to the nature of quantum mechanics, the mathematical theory of quantum information processing is often noncommutative. Commutative mathematical objects are numbers and functions, where the multiplication order does not matter. Quantum physics is largely modeled by matrices and operators whose multiplication is noncommutative. Such inherent non-commutativity decides the essential connection between the theory of operator algebras and quantum information theory. Based on this connection, the Principal Investigator will use mathematical tools from operator algebras to study entropic quantities in quantum information and quantum stochastic processes, which has theoretical relevance as well as applications in quantum information and quantum physics. This project will enhance the participation of graduate and undergraduate students, especially those from underrepresented group in the mathematical sciences, in the fast-growing area of quantum information science.The objective of the project is to use functional analytic approaches to study important quantum phenomena such as entanglement and coherence. The theory of operator algebras provides many powerful tools, such as noncommutative Lp spaces and operator spaces, for the study of analysis of noncommutative objects. One goal of the project is to investigate the functional inequalities of quantum Markov semigroups, which are powerful tools in deriving convergence property of open quantum systems. Another topic is to study the quantum asymptotic equipartition properties on general von Neumann algebras, which can be used to develop resource theories and other information tasks in general infinite dimensional quantum systems. The proposed research is expected to inspire new interactions between noncommutative analysis/probability, noncommutative geometry, and noncommutative optimal transport.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子信息理论是一个快速发展的领域,研究信息如何在量子力学定律下存储,处理和通信。它旨在利用量子现象,如纠缠和相干性,以获得密码学,通信和计算能力的实质性优势。为此,非常需要开发数学工具来研究量子信息处理的能力和局限性。由于量子力学的性质,量子信息处理的数学理论往往是非对易的。可交换的数学对象是数字和函数,其中乘法顺序无关紧要。量子物理学在很大程度上是由矩阵和算子建模的,这些算子的乘法是非交换的。这种内在的不可交换性决定了算符代数理论与量子信息理论之间的本质联系。基于这种联系,首席研究员将使用算子代数的数学工具来研究量子信息和量子随机过程中的熵量,这在量子信息和量子物理中具有理论相关性以及应用。本计划旨在加强研究生及本科生,特别是数学系学生,在量子资讯科学这个快速发展的领域的参与,目的是利用泛函分析方法研究重要的量子现象,例如纠缠和相干。算子代数理论为研究非交换对象的分析提供了许多强有力的工具,如非交换Lp空间和算子空间。该项目的目标之一是研究量子马尔可夫半群的函数不等式,这是导出开放量子系统收敛性的有力工具。另一个主题是研究一般von Neumann代数上的量子渐近均分性质,这可以用于发展一般无限维量子系统中的资源理论和其他信息任务。拟议的研究预计将激发新的非交换分析/概率,非交换几何和非交换最优transport.This奖项之间的相互作用反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Blecher其他文献

David Blecher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Blecher', 18)}}的其他基金

Noncommutative function theory in operator algebras and operator spaces
算子代数和算子空间中的非交换函数论
  • 批准号:
    1201506
  • 财政年份:
    2012
  • 资助金额:
    $ 22.98万
  • 项目类别:
    Standard Grant
Noncommutative functional analysis, operator algebras and operator spaces
非交换泛函分析、算子代数和算子空间
  • 批准号:
    0800674
  • 财政年份:
    2008
  • 资助金额:
    $ 22.98万
  • 项目类别:
    Standard Grant
Structure in Operator Spaces and Applications
操作空间和应用程序的结构
  • 批准号:
    0400731
  • 财政年份:
    2004
  • 资助金额:
    $ 22.98万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Biophilica - Analysis of bio-coatings as an alternative to PU-coatings for advanced product applications
Biophilica - 分析生物涂层作为先进产品应用的 PU 涂层的替代品
  • 批准号:
    10089592
  • 财政年份:
    2024
  • 资助金额:
    $ 22.98万
  • 项目类别:
    Collaborative R&D
CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
  • 批准号:
    2340465
  • 财政年份:
    2024
  • 资助金额:
    $ 22.98万
  • 项目类别:
    Continuing Grant
REU Site: Graph Learning and Network Analysis: from Foundations to Applications (GraLNA)
REU 网站:图学习和网络分析:从基础到应用 (GraLNA)
  • 批准号:
    2349369
  • 财政年份:
    2024
  • 资助金额:
    $ 22.98万
  • 项目类别:
    Standard Grant
Conference: Analysis on fractals and networks with applications, at Luminy
会议:分形和网络分析及其应用,在 Luminy 举行
  • 批准号:
    2334026
  • 财政年份:
    2024
  • 资助金额:
    $ 22.98万
  • 项目类别:
    Standard Grant
ROBIN: Rotation-based Buckling Instability Analysis, and Applications to Creation of Novel Soft Mechanisms
ROBIN:基于旋转的屈曲不稳定性分析及其在新型软机构创建中的应用
  • 批准号:
    24K00847
  • 财政年份:
    2024
  • 资助金额:
    $ 22.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis of discrete dynamical systems described by max-plus equations and their applications
最大加方程描述的离散动力系统分析及其应用
  • 批准号:
    23K03238
  • 财政年份:
    2023
  • 资助金额:
    $ 22.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Accelerating genomic analysis for time critical clinical applications
加速时间紧迫的临床应用的基因组分析
  • 批准号:
    10593480
  • 财政年份:
    2023
  • 资助金额:
    $ 22.98万
  • 项目类别:
CAREER: Temporal Network Analysis: Models, Algorithms, and Applications
职业:时态网络分析:模型、算法和应用
  • 批准号:
    2236789
  • 财政年份:
    2023
  • 资助金额:
    $ 22.98万
  • 项目类别:
    Continuing Grant
Model Reduction Methods for Extended Quantum Systems: Analysis and Applications
扩展量子系统的模型简化方法:分析与应用
  • 批准号:
    2350325
  • 财政年份:
    2023
  • 资助金额:
    $ 22.98万
  • 项目类别:
    Continuing Grant
Quantitative Analysis of Frictional Contact of Ultrasonic Motors for Robotics Applications
机器人应用超声波电机摩擦接触的定量分析
  • 批准号:
    23KJ0571
  • 财政年份:
    2023
  • 资助金额:
    $ 22.98万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了