Developing Machine Learning Potential to Unravel Quantum Effect on Ionic Hydration and Transport in Nanoscale Confinement
开发机器学习潜力来揭示纳米尺度限制中离子水合和传输的量子效应
基本信息
- 批准号:2154996
- 负责人:
- 金额:$ 28.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Nanoporous materials such as carbon nanotubes have served as the foundation for creating advanced separation technologies that sustainably support human society; for example, by producing clean water or recovering critical materials such as lithium. A unique structure-related property of nanoporous materials arises from their nanoscale pores, which exert quantum mechanical effects on the ions and molecules within the pores resulting in properties vastly differing from those observed in everyday bulk quantities. A complete understanding of the nanoscale confinement-induced effects is crucial for rational design of separation technologies using nanoporous membranes. However, fundamental knowledge of the nanoscale confinement-induced quantum effects on the properties of ions and molecules is limited, hampering the development of separation technologies. This project aims to develop computational models to elucidate the quantum effects on the structural and dynamic properties of ions and molecules confined in carbon nanotubes. The proposed research and education activities are closely integrated in this project through undergraduate research opportunities that focus on promoting diversity within the STEM field and the development of course content to train the future STEM workforce in advanced computational analysis techniques. This project is jointly funded by the Interfacial Engineering program of ENG/CBET and the Established Program to Stimulate Competitive Research (EPSCoR).The properties of nanoconfined fluids have been topics for science and engineering investigation because of their importance in developing advanced separation and reaction technologies. This research has demonstrated that the key to understanding nanoconfined fluid behavior lies in the fluid’s non-bulk properties. Nanoscale confinement can incite quantum effects due to the physically constraining and anisotropic environment. Quantum effects play an essential role in determining the non-bulk features of nanoconfined fluids. However, a knowledge gap remains in understanding the quantum effect on the non-bulk features of ions and molecules due to the lack of efficient computational tools. This research group hypothesizes that a well-trained machine learning potential can predict the hydration of ions in bulk and within carbon nanotubes as accurately as quantum mechanical calculations. Driven by this hypothesis, this project will develop a machine learning-based force field and investigate the quantum effect on ionic hydration and transport in carbon nanotubes (CNT) over a range of diameters and chiralities. The project includes three research tasks: (1) develop a machine learning force field to investigate the hydration structure, dynamics, and thermodynamics of selected cations (Li+, Na+, K+, Mg2+ and H+) and anions (F-, and Cl-) in the bulk phase; (2) develop a machine learning force field to investigate the non-bulk properties of water molecules inside carbon nanotubes; and (3) extend the machine learning force field and investigate ionic hydration and transport effects in carbon nanotubes. The proposed research will be conducted using molecular dynamics (MD), ab initio MD, enhanced sampling, and machine learning methods. The most significant outcomes will include (a) a deeper understanding of the quantum effect on ionic hydration and transport in the nanoscale confinement and (b) an extensible machine learning force field for ions and water molecules in the bulk phase and inside CNTs. The outcomes will provide the knowledge and cyber-infrastructure for model-based design of nanoporous separation membranes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
碳纳米管等纳米多孔材料已成为创建可持续支持人类社会的先进分离技术的基础;例如,通过生产清洁水或回收锂等关键材料。纳米多孔材料的一个独特的结构相关性质来自其纳米级孔,其对孔内的离子和分子施加量子力学效应,导致性质与日常大量观察到的性质大不相同。全面理解纳米尺度的限制效应对于合理设计纳米多孔膜分离技术是至关重要的。然而,人们对纳米尺度限制诱导的量子效应对离子和分子性质的影响了解有限,阻碍了分离技术的发展。本计画旨在发展计算模型,以阐明量子效应对碳奈米管中离子与分子的结构与动力学性质的影响。拟议的研究和教育活动通过本科生研究机会紧密结合在这个项目中,重点是促进STEM领域的多样性和课程内容的开发,以培养未来的STEM劳动力先进的计算分析技术。该项目由ENG/CBET的界面工程项目和刺激竞争力研究的既定项目(EPSCoR)共同资助。由于纳米约束流体在开发先进的分离和反应技术中的重要性,其性质一直是科学和工程研究的主题。这项研究表明,理解纳米约束流体行为的关键在于流体的非体性质。由于纳米尺度的物理约束和各向异性环境,纳米尺度的限制可以激发量子效应。量子效应在确定纳米约束流体的非体特征方面起着至关重要的作用。然而,由于缺乏有效的计算工具,在理解离子和分子的非体特征的量子效应方面仍然存在知识差距。该研究小组假设,训练有素的机器学习潜力可以像量子力学计算一样准确地预测大量和碳纳米管内离子的水合作用。在这一假设的驱动下,该项目将开发一个基于机器学习的力场,并研究在一定直径和手性范围内碳纳米管(CNT)中离子水合和传输的量子效应。该项目包括三项研究任务:(1)开发机器学习力场,以调查选定阳离子的水合结构,动力学和热力学(Li+、Na+、K+、Mg2+和H+)和阴离子(2)开发一个机器学习力场来研究碳纳米管内部水分子的非本体性质;以及(3)扩展机器学习力场并研究碳纳米管中的离子水合和输运效应。拟议的研究将使用分子动力学(MD),从头算MD,增强采样和机器学习方法进行。最重要的成果将包括(a)更深入地了解纳米级限制中离子水合和传输的量子效应,以及(B)体相和CNT内部离子和水分子的可扩展机器学习力场。该奖项反映了NSF的法定使命,并已被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qing Shao其他文献
Disease-linked connexin26 S17F promotes volar skin abnormalities and mild wound healing defects in mice
疾病相关的 connexin26 S17F 促进小鼠掌侧皮肤异常和轻度伤口愈合缺陷
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:9
- 作者:
Eric R. Press;Katanya C. Alaga;Kevin J. Barr;Qing Shao;Felicitas Bosen;K. Willecke;D. Laird - 通讯作者:
D. Laird
Intelligence Recognition of Clotting Level in Hemodialysis
血液透析凝血水平智能识别
- DOI:
10.1109/access.2023.3304914 - 发表时间:
2023 - 期刊:
- 影响因子:3.9
- 作者:
Tianxiao Wang;Qing Shao;Ran Li;Yiming Li;Nanmei Liu;Hui Yang - 通讯作者:
Hui Yang
Dysplasia by Distinct Mechanisms
不同机制的发育不良
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Tao Huang;Qing Shao;Andrew Macdonald;Li Xin;R. Lorentz;Donglin Bai;W. Dale - 通讯作者:
W. Dale
Seebeck Tensor Analysis of (p × n)-type Transverse Thermoelectric Materials
(p × n)型横向热电材料的塞贝克张量分析
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0.8
- 作者:
Qing Shao;A. K. Kanakkithodi;Yi Xia;M. Chan;M. Grayson - 通讯作者:
M. Grayson
Dynamics of DNA Supercoil Relaxation by Type II Topoisomerases
- DOI:
10.1016/j.bpj.2010.12.1264 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Qing Shao;David Dunlap;Laura Finzi - 通讯作者:
Laura Finzi
Qing Shao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Investigating the potential for developing self-regulation in foreign language learners through the use of computer-based large language models and machine learning
通过使用基于计算机的大语言模型和机器学习来调查外语学习者自我调节的潜力
- 批准号:
24K04111 - 财政年份:2024
- 资助金额:
$ 28.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing and Understanding Thermally Conductive Polymers by Combining Molecular Simulation, Machine Learning and Experiment
通过结合分子模拟、机器学习和实验来开发和理解导热聚合物
- 批准号:
2332270 - 财政年份:2024
- 资助金额:
$ 28.7万 - 项目类别:
Standard Grant
Developing machine learning based approaches to weld residual stress problems
开发基于机器学习的方法来解决焊接残余应力问题
- 批准号:
2894296 - 财政年份:2023
- 资助金额:
$ 28.7万 - 项目类别:
Studentship
Developing novel machine learning approaches to studying cell development
开发新的机器学习方法来研究细胞发育
- 批准号:
2326879 - 财政年份:2023
- 资助金额:
$ 28.7万 - 项目类别:
Continuing Grant
Pig ID: developing a deep learning machine vision system to track pigs using individual biometrics
Pig ID:开发深度学习机器视觉系统,利用个体生物识别技术跟踪猪
- 批准号:
BB/X001385/1 - 财政年份:2023
- 资助金额:
$ 28.7万 - 项目类别:
Research Grant
Pig ID: developing a deep learning machine vision system to track pigs using individual biometrics
Pig ID:开发深度学习机器视觉系统,利用个体生物识别技术跟踪猪
- 批准号:
BB/X001830/1 - 财政年份:2023
- 资助金额:
$ 28.7万 - 项目类别:
Research Grant
Developing Machine Learning Models for Decision Support and Allocation Optimization in Heart Transplantation
开发用于心脏移植决策支持和分配优化的机器学习模型
- 批准号:
10735348 - 财政年份:2023
- 资助金额:
$ 28.7万 - 项目类别:
Developing a blood fatty acid-based algorithm as an early predictor of insulin resistance: Applying machine learning to harmonized data from prospective cohort studies
开发基于血液脂肪酸的算法作为胰岛素抵抗的早期预测因子:将机器学习应用于前瞻性队列研究的统一数据
- 批准号:
10696711 - 财政年份:2023
- 资助金额:
$ 28.7万 - 项目类别:
Pictura Bio: Machine learning enhanced universal point of care diagnosis platform for infectious diseases leveraging novel fluorescent labelling of enveloped pathogens - developing the Alpha Prototype.
Pictura Bio:机器学习增强了传染病的通用护理点诊断平台,利用包膜病原体的新型荧光标记 - 开发 Alpha 原型。
- 批准号:
10077183 - 财政年份:2023
- 资助金额:
$ 28.7万 - 项目类别:
Collaborative R&D
developing and validating customized machine learning and data analytics methods for mining cricket
开发和验证采矿板球的定制机器学习和数据分析方法
- 批准号:
2885595 - 财政年份:2023
- 资助金额:
$ 28.7万 - 项目类别:
Studentship