Housing Reconstruction Demand Surge: Measurement, Modeling, And Vulnerability Assessment

住房重建需求激增:测量、建模和脆弱性评估

基本信息

  • 批准号:
    2155201
  • 负责人:
  • 金额:
    $ 24.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Significant post-disaster cost escalations often slow down repair process, magnify inequality, and amplify underinsurance problem. This research will reveal vulnerable characteristics in regional housing construction markets and identify effective disaster-related policies to alleviate these vulnerabilities. It will help identify the construction capacity gaps that cause the construction cost escalation following natural disasters. The discovery is critical for raising awareness, developing a greater construction capacity, setting effective reconstruction goals, initiating risk mitigation and resourcing strategies, and enforcing effective regulations and policies. Cutting the housing recovery time and cost through effective pre-planning could be realized. This project also aims to address the critical shortage of talents capable of leading post-disaster reconstruction in the civil engineering discipline. Hispanics and women graduate and undergraduate students at the Hispanic-serving University of Texas at Arlington (UTA) will participate in every step of this project. This project will enable students to work with city planners to lead stakeholder involvement in disadvantaged communities.This project will address fundamental limitations of existing demand surge models by 1) creating non-hazard econometric baselines for housing construction cost variations, 2) creating an econometric measurement method for quantifying post-disaster construction cost escalations, 3) creating spatiotemporal econometric models to represent the housing reconstruction demand surge, and assessing the housing reconstruction vulnerability of communities, and 4) quantifying the impacts of disaster-related policies on housing reconstruction. This project will generate new knowledge at the nexus of three critical disciplines: Housing Construction, Economics, and Built Environment Resilience. The research will transform existing construction demand surge models by establishing links between pre-disaster construction market conditions and post-disaster construction cost escalations. To that end, spatiotemporal econometric models, such as spatial panel data models, will use data from more than 600 U.S. counties affected by large-scale natural disasters over the past ten years, as well as data from their neighboring counties. These models will consider different circumstances based on a range of non-hazard to extreme hazard conditions. Difference-in-difference panel data models will estimate the effect of disaster-related policies (ranging from local to federal). The research team will engage federal, state, and local governments to identify and evaluate various disaster-related policies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
灾后成本的显著上升往往会减缓修复进程,放大不平等,并放大保险不足问题。这项研究将揭示区域住房建筑市场的脆弱特征,并确定有效的灾害相关政策来缓解这些脆弱性。它将有助于确定导致自然灾害后建设成本上升的建设能力缺口。这一发现对于提高认识、发展更大的建设能力、制定有效的重建目标、启动风险缓解和资源分配战略以及执行有效的法规和政策至关重要。通过有效的前期规划,可以减少住房恢复的时间和成本。该项目还旨在解决土木工程学科中能够领导灾后重建的人才严重短缺的问题。在为拉美裔服务的德克萨斯大学阿灵顿分校(UTA),拉美裔和女性研究生和本科生将参与这个项目的每一步。该项目将使学生能够与城市规划师合作,引导利益相关者参与弱势社区。本项目将通过以下方式解决现有需求激增模型的根本局限性:1)为住房建设成本变化创建非危害性计量经济学基线,2)创建量化灾后建设成本上升的计量经济学方法,3)创建时空计量经济学模型来代表住房重建需求激增,并评估社区的住房重建脆弱性,以及4)量化与灾害相关的政策对住房重建的影响。该项目将在三个关键学科的结合点产生新的知识:住房建设、经济学和建筑环境复原力。这项研究将通过在灾前建筑市场状况和灾后建筑成本上涨之间建立联系来转变现有的建筑需求激增模型。为此,时空计量经济学模型,如空间面板数据模型,将使用过去十年来美国600多个受大规模自然灾害影响的县的数据,以及来自邻近县的数据。这些模型将根据一系列非危险到极端危险条件考虑不同的情况。差异面板数据模型将估计灾难相关政策(从地方政策到联邦政策)的影响。研究团队将与联邦、州和地方政府合作,确定和评估各种与灾害相关的政策。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mohsen Shahandashti其他文献

Examining the Effect of Weather-Related Natural Disasters on Labor Wage Fluctuations in Transportation Construction
检验与天气相关的自然灾害对交通建设劳动力工资波动的影响
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ferika Farooghi;S. Shahooei;Mohsen Shahandashti
  • 通讯作者:
    Mohsen Shahandashti
Investigating the impacts of socioeconomic conditions on schedule overrun occurrences in roadway projects: the fusion of machine learning and geospatial mapping
  • DOI:
    10.1007/s41062-025-02033-7
  • 发表时间:
    2025-05-12
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    Alireza Shamshiri;Kyeong Rok Ryu;Mohsen Shahandashti;June Young Park
  • 通讯作者:
    June Young Park
Post-hazard labor wage fluctuations: a comparative empirical analysis among different sub-sectors of the U.S. construction sector
灾后劳动力工资波动:美国建筑业不同子行业的比较实证分析
Empirical Study of the Correlation between Geoelectrical and Soil-Index Properties of Clayey Soils
粘土地电特性与土壤指数特性相关性的实证研究
Diagnosis and Quantification of Postdisaster Construction Material Cost Fluctuations
灾后建筑材料成本波动诊断与量化
  • DOI:
    10.1061/(asce)nh.1527-6996.0000381
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Niloufar Khodahemmati;Mohsen Shahandashti
  • 通讯作者:
    Mohsen Shahandashti

Mohsen Shahandashti的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mohsen Shahandashti', 18)}}的其他基金

Collaborative Research: IRES Track I: Artificial Intelligence and Human Designer - Research Experience in Singapore (AIHD Singapore)
合作研究:IRES 第一轨:人工智能和人类设计师 - 新加坡的研究经验 (AIHD Singapore)
  • 批准号:
    2246299
  • 财政年份:
    2023
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
I-Corps: A Resilience Analytics Technology for Enhancing Seismic Rehabilitation Decision Making for Water Infrastructure Systems
I-Corps:用于增强水基础设施系统地震恢复决策的弹性分析技术
  • 批准号:
    2220685
  • 财政年份:
    2022
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
RAPID/Collaborative Research: An Empirical Investigation of Risk Preferences of Transportation Construction Workforce Managers under COVID-19 Pandemic Uncertainties
RAPID/协作研究:COVID-19 大流行不确定性下交通建设劳动力管理者风险偏好的实证调查
  • 批准号:
    2035299
  • 财政年份:
    2020
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Robust Risk-based Decision Analytics for Enhancing Seismic Resilience of Water Pipe Networks
用于增强水管网抗震能力的稳健的基于风险的决策分析
  • 批准号:
    1926792
  • 财政年份:
    2019
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目

相似海外基金

FaVoRe - Fast Volumetric Reconstruction
FaVoRe - 快速体积重建
  • 批准号:
    10083559
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Collaborative R&D
Atomistic reconstruction of large biomolecular systems from low-resolution cryo-electron microscopy data - RECKON
利用低分辨率冷冻电子显微镜数据原子重建大型生物分子系统 - RECKON
  • 批准号:
    EP/Y010221/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Fellowship
ZooCELL: Tracing the evolution of sensory cell types in animal diversity: multidisciplinary training in 3D cellular reconstruction, multimodal data ..
ZooCELL:追踪动物多样性中感觉细胞类型的进化:3D 细胞重建、多模态数据方面的多学科培训..
  • 批准号:
    EP/Y037049/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Research Grant
Tracing the evolution of sensory cell types in animal diversity: multidisciplinary training in 3D cellular reconstruction, multimodal data analysis
追踪动物多样性中感觉细胞类型的进化:3D 细胞重建、多模式数据分析的多学科培训
  • 批准号:
    EP/Y037081/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Research Grant
TrustMRI: Trustworthy and Robust Magnetic Resonance Image Reconstruction with Uncertainty Modelling and Deep Learning
TrustMRI:利用不确定性建模和深度学习进行可靠且鲁棒的磁共振图像重建
  • 批准号:
    EP/X039277/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Research Grant
One-step reconstruction of plastic waste back to its constituent monomers (ONESTEP)
将塑料废物一步重建回其组成单体(ONESTEP)
  • 批准号:
    EP/Y003934/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Research Grant
A self-driven intramedullary nail for the reconstruction of large bone defects
用于重建大骨缺损的自驱动髓内钉
  • 批准号:
    MR/Z503836/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Research Grant
Deep Learning for 3-D reconstruction of heterogeneous molecular structures from Cryo-EM data
利用冷冻电镜数据进行异质分子结构 3D 重建的深度学习
  • 批准号:
    BB/Y513878/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Research Grant
3DFace@Home: A pilot study for robust and highly accurate facial 3D reconstruction from mobile devices for facial growth monitoring at home
3DFace@Home:一项通过移动设备进行稳健且高精度面部 3D 重建的试点研究,用于家庭面部生长监测
  • 批准号:
    EP/X036642/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Research Grant
Ethnography of Archaeology and Architectural Reconstruction
考古民族志与建筑重建
  • 批准号:
    23K25438
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了