Geometry and Arithmetic of Brill--Noether Loci and Brill--Noether curves
布里尔-诺特轨迹和布里尔-诺特曲线的几何与算术
基本信息
- 批准号:2200655
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Polynomial equations are ubiquitous in mathematics, physics, and other sciences. One can study a system of polynomial equations geometrically, by thinking about the shape formed by these solutions, as well as arithmetically, by considering what types of numbers arise in solutions. This project studies the relationship between the geometry and arithmetic in the one-dimensional case of algebraic curves. Broadly, this project will investigate the possible explicit realizations of an abstract algebraic curve by polynomial equations (so-called Brill-Noether theory), which informs both the geometry of the curve, as well as its arithmetic of solutions over bounded extensions of the rational numbers. The project includes the training of undergraduate and graduate students and work with members of underrepresented groups. Specifically, the PI will initiate the arithmetic Brill-Noether theory program to elucidate the structure of the rational points on Brill-Noether loci in the Picard variety of a curve. This has applications to determining the low degree points on curves defined over number fields. The PI will also investigate analogues of the classic Brill-Noether theorem when the curve is special in moduli due to a low degree realization in projective space. In particular, when the curve has a low degree map to the projective line, the PI will study the relationship with affine permutations and the affine Grassmannian.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多项式方程在数学、物理和其他科学中无处不在。 人们可以从几何学的角度研究多项式方程组,通过思考这些解形成的形状,以及算术,通过考虑解中出现的数字类型。 本计画研究一维代数曲线之几何与算术之关系。 从广义上讲,这个项目将研究一个抽象的代数曲线的多项式方程(所谓的Brill-Noether理论)的可能的显式实现,这既通知曲线的几何形状,以及它的算法的解决方案在有理数的有界扩展。该项目包括培训本科生和研究生,并与代表性不足的群体的成员合作。具体而言,PI将启动算术Brill-Noether理论程序,以阐明曲线的Picard簇中Brill-Noether轨迹上的有理点的结构。 这可以应用于确定数域上定义的曲线上的低阶点。 PI还将研究经典Brill-Noether定理的类似物,当曲线在模中是特殊的,因为在射影空间中实现了低程度。 特别是,当曲线与投影线的映射度较低时,PI将研究与仿射置换和仿射格拉斯曼的关系。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Isabel Vogt其他文献
Global Brill--Noether Theory over the Hurwitz Space.
全球布里尔——赫尔维茨空间的诺特理论。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Eric Larson;H. Larson;Isabel Vogt - 通讯作者:
Isabel Vogt
Elliptic Fibrations on Covers of the Elliptic Modular Surface of Level 5
5 级椭圆模面覆盖层上的椭圆振动
- DOI:
10.1007/978-3-319-74998-3_9 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
F. Balestrieri;Julie Desjardins;Alice Garbagnati;Céline Maistret;Cecília Salgado;Isabel Vogt - 通讯作者:
Isabel Vogt
The interpolation problem: When can you pass a curve of a given type through N random points in space?
插值问题:什么时候可以将给定类型的曲线穿过空间中的 N 个随机点?
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Eric Larson;Ravi Vakil;Isabel Vogt - 通讯作者:
Isabel Vogt
Normal bundles of rational curves in Grassmannians
格拉斯曼有理曲线的正态束
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Izzet Coskun;Eric Larson;Isabel Vogt - 通讯作者:
Isabel Vogt
Isolated and parameterized points on curves
曲线上的孤立点和参数化点
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
B. Viray;Isabel Vogt - 通讯作者:
Isabel Vogt
Isabel Vogt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Isabel Vogt', 18)}}的其他基金
CAREER: Interpolation, stability, and rationality
职业:插值、稳定、合理
- 批准号:
2338345 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Conference: AGNES Summer School in Algebraic Geometry
会议:AGNES 代数几何暑期学校
- 批准号:
2312088 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
相似海外基金
Conference: Arithmetic quantum field theory
会议:算术量子场论
- 批准号:
2400553 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
- 批准号:
2401472 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
CAREER: Arithmetic Dynamical Systems on Projective Varieties
职业:射影簇的算术动力系统
- 批准号:
2337942 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Arithmetic of Thin Groups and Isogeny-Based Cryptography
稀疏群算法和基于同源的密码学
- 批准号:
2401580 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Conference: Visions in Arithmetic and Beyond
会议:算术及其他领域的愿景
- 批准号:
2402436 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
CAREER: Topology, Spectral Geometry, and Arithmetic of Locally Symmetric Spaces
职业:拓扑、谱几何和局部对称空间算术
- 批准号:
2338933 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Euler Systems, Iwasawa Theory, and the Arithmetic of Elliptic Curves
欧拉系统、岩泽理论和椭圆曲线算术
- 批准号:
2401321 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant