Shimura Varieties with Parahoric and Deeper Level Structure

具有旁隐和更深层次结构的志村品种

基本信息

  • 批准号:
    2200873
  • 负责人:
  • 金额:
    $ 21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

The Langlands program is a far-reaching web of conjectures linking seemingly unrelated subjects in mathematics: number theory, representation theory, analysis, and algebraic geometry. More specifically, the Langlands reciprocity conjectures seek to uncover mysterious identities relating functions of arithmetic/number-theoretic nature with functions of analytic/representation-theoretic nature. Such identities reveal hidden symmetries in the objects that give rise to the functions, and each instance of such identities usually has deep consequences. For example, a special case of Langlands' reciprocity conjectures was proved by Wiles and his school, finally resulting in a proof of Fermat's Last Theorem. Fermat's Last Theorem concerned integer solutions of a particular polynomial equation. More general solution sets of polynomials are called algebraic varieties, and among those, Shimura varieties have been central in establishing cases of Langlands' vision. Their study brings together techniques from diverse fields and challenges mathematicians from many different directions. This project centers on the study Shimura varieties as a testing ground of Langlands' reciprocity conjectures. Along the way, the PI will involve his PhD students and Postdocs, and will continue his work on disseminating fundamental science, and on building interactions between different mathematics departments and between mathematicians with diverse fields of expertise.More specifically, the PI will study Shimura varieties from a geometric and representation-theoretic viewpoint, using recent breakthroughs in various domains, in order to express Hasse-Weil zeta functions of very general Shimura varieties in terms of automorphic L-functions. The focus will be on Shimura varieties of abelian type, and the PI will solve various difficulties arising from the presence of singularities on these varieties. These bad reduction issues are easiest to study in the case of parahoric level structure, which will be investigated first, building on prior work of the PI along with recent methods of Kisin-Shin-Zhu in the good reduction (no singularities) cases. The PI will also address deeper level structure situations, bringing in new p-adic geometry techniques due to Scholze and Fargues-Scholze. Of particular importance will be the Fargues-Scholze geometrization of the local Langlands correspondence, and the way this interacts with the PI's ideas on implementing the Langlands-Kottwitz method for deeper level Shimura varieties. This study of bad reduction phenomena will provide steps toward the ultimate goal of realizing links between Galois representations and automorphic representations in the cohomology of Shimura varieties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
朗兰兹纲领是一个意义深远的知识网络,它将数学中看似无关的学科联系在一起:数论、表示论、分析和代数几何。更具体地说,朗兰兹互易定理试图揭示算术/数论性质的函数与解析/表示论性质的函数之间的神秘恒等式。这种恒等式揭示了产生函数的对象中隐藏的对称性,而这种恒等式的每一个实例通常都有深刻的后果。例如,怀尔斯和他的学派证明了朗兰兹互易定理的一个特例,最终证明了费马大定理。费马大定理涉及一个特定多项式方程的整数解。多项式的更一般的解集被称为代数簇,其中,志村簇在朗兰兹观点的建立中起了核心作用。他们的研究汇集了来自不同领域的技术,并从许多不同的方向挑战数学家。本研究以志村品种为中心,作为朗兰兹互惠理论的试验场。沿着这条路,PI将让他的博士生和博士后参与进来,并将继续他的工作,传播基础科学,建立不同数学部门之间的互动,以及不同专业领域的数学家之间的互动。更具体地说,PI将从几何和表示论的角度研究志村簇,利用各个领域的最新突破,为了用自守L-函数表示非常一般的Shimura簇的Hasse-Weil zeta函数。重点将是志村品种的阿贝尔型,和PI将解决各种困难所产生的奇点存在这些品种。这些坏的减少问题是最容易研究的情况下,parahoric水平结构,这将首先进行调查,建立在以前的工作的PI沿着与最近的方法Kisin-Shin-Zhu在良好的减少(无奇点)的情况下。PI还将解决更深层次的结构情况,引入新的p-adic几何技术,由于Scholze和Festeres-Scholze。特别重要的将是本地朗兰兹对应的Festhes-Scholze几何化,以及这与PI关于实施更深层次的志村品种的朗兰兹-Kottwitz方法的想法相互作用的方式。这项研究的不良减少现象将提供步骤实现之间的联系伽罗瓦表示和自守表示的上同调志村品种的最终目标。这一奖项反映了NSF的法定使命,并已被认为是值得支持,通过评估使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Haines其他文献

A Blind Coupon Mechanism Enabling Veto Voting over Unreliable Networks
盲目优惠券机制可在不可靠的网络上进行否决投票
Revisiting Practical and Usable Coercion-Resistant Remote E-Voting
重新审视实用且可用的抗强制远程电子投票
SoK: Surveying definitions of coercion resistance
SoK:强制抵抗的调查定义
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Haines;B. Smyth
  • 通讯作者:
    B. Smyth
SoK: Techniques for Verifiable Mix Nets
SoK:可验证混合网络的技术
Cardiolipin's (CLs) pK2 allows electron but not proton pumping during mitochondrial ATP synthesis
  • DOI:
    10.1016/j.chemphyslip.2007.06.059
  • 发表时间:
    2007-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Thomas Haines
  • 通讯作者:
    Thomas Haines

Thomas Haines的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Haines', 18)}}的其他基金

Cocenters and Representations of Reductive p-adic Groups
还原p进群的中心和表示
  • 批准号:
    1801352
  • 财政年份:
    2018
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Integral models and endoscopy for Shimura varieties with deeper level structure
具有更深层次结构的志村品种的整体模型和内窥镜检查
  • 批准号:
    1406787
  • 财政年份:
    2014
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Automorphic forms, Galois representations, periods and p-adic L-functions
FRG:协作研究:自守形式、伽罗瓦表示、周期和 p 进 L 函数
  • 批准号:
    0854900
  • 财政年份:
    2009
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Shimura Varieties and the Bernstein center
志村品种和伯恩斯坦中心
  • 批准号:
    0901723
  • 财政年份:
    2009
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Bad Reduction of Shimura varieties
志村品种的不良减少
  • 批准号:
    0303605
  • 财政年份:
    2003
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
NSF NATO POSTDOCTORAL FELLOWSHIPS
NSF 北约博士后奖学金
  • 批准号:
    9902523
  • 财政年份:
    1999
  • 资助金额:
    $ 21万
  • 项目类别:
    Fellowship Award
Structural Studies in Flagellar Membranes
鞭毛膜的结构研究
  • 批准号:
    7815112
  • 财政年份:
    1978
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing grant
Structure of Flagellar Membrane
鞭毛膜的结构
  • 批准号:
    7608884
  • 财政年份:
    1976
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing grant

相似国自然基金

正则半单Hessenberg varieties上的代数拓扑
  • 批准号:
    11901218
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Wonderful Varieties, Hyperplane Arrangements, and Poisson Representation Theory
奇妙的品种、超平面排列和泊松表示论
  • 批准号:
    2401514
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
The 2nd brick-Brauer-Thrall conjecture via tau-tilting theory and representation varieties
通过 tau 倾斜理论和表示变体的第二个砖-布劳尔-萨尔猜想
  • 批准号:
    24K16908
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Arithmetic Dynamical Systems on Projective Varieties
职业:射影簇的算术动力系统
  • 批准号:
    2337942
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Combinatorics of Total Positivity: Amplituhedra and Braid Varieties
总正性的组合:幅面体和辫子品种
  • 批准号:
    2349015
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
CAREER: Algebraicity and Integral Models of Shimura Varieties
职业:志村品种的代数性和积分模型
  • 批准号:
    2338942
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Quasimaps to Nakajima Varieties
中岛品种的准地图
  • 批准号:
    2401380
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Diagonal Grobner Geometry of Generalized Determinantal Varieties
广义行列式簇的对角格罗布纳几何
  • 批准号:
    2344764
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Prosodic Event Annotation and Detection in Three Varieties of English
三种英语韵律事件标注与检测
  • 批准号:
    2316030
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
CAREER: Birational Geometry and K-stability of Algebraic Varieties
职业:双有理几何和代数簇的 K 稳定性
  • 批准号:
    2234736
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Producing more with less adapting high yielding barley varieties to low input agriculture
让高产大麦品种适应低投入农业,少花钱多产
  • 批准号:
    BB/Y513672/1
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了