EAGER: Magnetothermal Control of Cell Fates and Function
EAGER:细胞命运和功能的磁热控制
基本信息
- 批准号:2200991
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The potential to guide cellular functions from a distance and direct the regeneration of aged or damaged cells and tissues will have broad impacts in biomedicine. Cells are the basic building blocks of life, and have incredible capacity; developing the ability to control cellular functions will enable rebuilding diseased and damaged tissues, replacing aged organs or directing cells to hunt and eliminate cancer. As individuals, cells have tremendous capability, and cells also have a natural ability to work together such that with proper control of this team effort the abilities of cells can be amplified; think of all 100 million single cells of your liver working together to help you digest food, distribute nutrients to the body, store energy and purify your blood. The functions of cells are regulated by circuits comprised of genes and proteins that can be controlled with biological switches. However, to date, a means of transferring a number of switches to cells and controlling them from a distance has not been described. This project seeks to develop biological remote controls with multiple switches that can be used to direct cells to perform functions and work together. These remote control modules that are called, “engineered organelles”, can be operated with magnetic fields. With magnetically controlled engineered organelles, rapid flashes of magnetic fields can warm the engineered organelle and turn on or off biological switches that control the cells function. The switches are designed with multiplexing capability so multiple functions can be controlled remotely. Engineered organelles are similarly designed for controlling multiple biological functions within a cell and direct them to work together. The multidisciplinary nature of the project offers unique training opportunities for the next generation of STEM researchers in the fields of bioengineering, physical sciences, synthetic biology and regenerative medicine. The research team invites students from underrepresented groups to participate in summer research via the successful ENSURE (EngiNeering Summer Undergraduate Research Experience) program at Michigan State University (MSU). In addition, the team develops workshops on engineered biological remote controls for high school science teachers to enable them to update their knowledge and refresh their curricula with state-of-the-art research. To enhance public understanding and appreciation of what engineered organelles can accomplish, the research team participates in the MSU Science Festival which caters to the greater Lansing area. Results from the project will be integrated into undergraduate course curricula and be incorporated into graduate courses in bioengineering and synthetic biology to teach the new principle of using engineered organelles to guide biology.This project aims at mimicking endosymbiogenesis and modify prokaryotic cells to create engineered magnetoendosymbionts (eMEs) that can be controlled using alternating magnetic fields (AMF). This involves engineering iron particle-coated or iron-containing prokaryotes, magnetotactic bacteria (MTB), to act as magnetothermally regulated pseudo-organelles. Magnetothermal control will activate eME to express mammalian transcription (txn) factors directed to host cell nuclei for controlling host gene expression. Genetic thermal switches will be engineered into MTB using optical reporter genes as a readout, and deliver reporters from eME in the cytoplasm to the nucleus of the host cell. The use of reporter genes will help guide development of eME that encode mammalian txn factors to enable reprogramming of differentiated macrophages into iPSCs and then into hepatocytes. A chemically (mannose) regulated iPSC-generating operon will be engineered expressing Oct3/4, Sox2, KLF4, c-Myc, txn factors for cellular reprogramming and a thermally regulated hepatocyte-generating operon expressing txn factors HNF4A, HNF1A. FoxA1 and FoxA3. Once demonstrated in the EES the operons will be transferred to MTB and used these eMEs to program macrophages to iPSCs and then to hepatocytes with magnetothermal control.This project is funded by the Systems and Synthetic Biology Cluster in the Division of Molecular and Cellular Biosciences and the Engineering Biology and Health Cluster in the Division of Chemical, Bioengineering, Environmental and Transport Systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
远距离指导细胞功能和指导老化或受损细胞和组织再生的潜力将在生物医学中产生广泛影响。细胞是生命的基本构件,具有令人难以置信的能力;发展控制细胞功能的能力将使重建疾病和受损的组织、替换老化的器官或指导细胞寻找和消除癌症。作为个体,细胞有巨大的能力,细胞也有一种自然的合作能力,通过适当地控制这个团队的努力,细胞的能力可以被放大;想想你肝脏的所有1亿个单个细胞一起工作,帮助你消化食物,向身体分配营养,储存能量和净化你的血液。细胞的功能受到由基因和蛋白质组成的电路的调节,这些基因和蛋白质可以通过生物开关来控制。然而,到目前为止,还没有描述将多个开关转移到单元并从远处控制它们的方法。该项目寻求开发具有多个开关的生物遥控器,这些开关可以用来指导细胞执行功能并共同工作。这些被称为“工程细胞器”的遥控模块可以在磁场作用下操作。利用磁控工程细胞器,磁场的快速闪烁可以使工程细胞器升温,并打开或关闭控制细胞功能的生物开关。这些开关设计具有多路复用功能,因此可以远程控制多种功能。工程细胞器的设计类似于控制细胞内的多种生物功能,并指导它们共同工作。该项目的多学科性质为生物工程、物理科学、合成生物学和再生医学领域的下一代STEM研究人员提供了独特的培训机会。研究团队邀请来自代表性不足群体的学生通过密歇根州立大学(MSU)成功的SECURE(工程暑期本科生研究体验)项目参与暑期研究。此外,该团队还为高中科学教师开发了关于工程生物遥控器的研讨会,使他们能够更新知识,并用最先进的研究更新他们的课程。为了增进公众对工程细胞器所能达到的效果的理解和欣赏,研究团队参加了迎合大兰辛地区的密歇根州立大学科学节。该项目的成果将被整合到本科课程中,并被纳入生物工程和合成生物学的研究生课程中,教授使用工程细胞器来指导生物的新原理。该项目旨在模拟内共生并修改原核细胞,以创造可以使用交变磁场(AMF)控制的工程磁内共生生物(EMES)。这涉及工程铁颗粒包被或含铁原核生物,趋磁性细菌(MTB),作为磁热调节的伪细胞器。磁热控制将激活EME表达针对宿主细胞核的哺乳动物转录因子(TXN),从而控制宿主基因的表达。基因热开关将利用光学报告基因作为读数,被工程化到结核杆菌中,并将报告从细胞质中的EME运送到宿主细胞的细胞核。报告基因的使用将有助于指导编码哺乳动物TXN因子的EME的发展,使分化的巨噬细胞能够重新编程为IPSCs,然后再进入肝细胞。一个化学(甘露糖)调节的IPSC生成操纵子将被设计成表达Oct3/4,Sox2,KLF4,c-Myc,TXN因子用于细胞重编程,以及一个温度调节的肝细胞生成操纵子表达TXN因子HNF4a,HNF1a。FOXA1和FoxA3。一旦在EES中显示,操纵子将被转移到MTB,并使用这些EME在磁热控制下将巨噬细胞编程为IPSCs,然后到肝细胞。该项目由分子和细胞生物科学部的系统和合成生物学组以及化学、生物工程、环境和运输系统部的工程生物学和健康组资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Magnetothermal Control of Temperature-Sensitive Repressors in Superparamagnetic Iron Nanoparticle-Coated Bacillus subtilis
超顺磁性铁纳米颗粒包被的枯草芽孢杆菌中温度敏感抑制子的磁热控制
- DOI:10.1021/acsnano.2c06239
- 发表时间:2022
- 期刊:
- 影响因子:17.1
- 作者:Greeson, Emily M.;Madsen, Cody S.;Makela, Ashley V.;Contag, Christopher H.
- 通讯作者:Contag, Christopher H.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Contag其他文献
Christopher Contag的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Magnetic Particle Imaging (MPI) for Imaging and Magnetothermal Therapy of Brain Tumors
用于脑肿瘤成像和磁热治疗的磁粒子成像 (MPI)
- 批准号:
10668542 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Magnetothermal brain stimulation towards the rescue of beta-amyloid pathology
磁热脑刺激拯救β-淀粉样蛋白病理
- 批准号:
10621910 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Magnetothermal brain stimulation towards the rescue of beta-amyloid pathology
磁热脑刺激拯救β-淀粉样蛋白病理
- 批准号:
10420096 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Magnetic Particle Imaging (MPI) for Imaging and Magnetothermal Therapy of Brain Tumors
用于脑肿瘤成像和磁热治疗的磁粒子成像 (MPI)
- 批准号:
9891731 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Magnetic Particle Imaging (MPI) for Imaging and Magnetothermal Therapy of Brain Tumors
用于脑肿瘤成像和磁热治疗的磁粒子成像 (MPI)
- 批准号:
10133006 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Non-invasive Excitation and Inhibition of Neural Activity via On-Demand Magnetothermal Drug Release
通过按需磁热药物释放对神经活动进行非侵入性激发和抑制
- 批准号:
10457349 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Non-invasive Excitation and Inhibition of Neural Activity via On-Demand Magnetothermal Drug Release
通过按需磁热药物释放对神经活动进行非侵入性激发和抑制
- 批准号:
10226216 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Multi-Site Non-Invasive Magnetothermal Excitation and Inhibition of Deep Brain Structures
脑深部结构的多位点非侵入性磁热激发和抑制
- 批准号:
9357724 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Multi-Site Non-Invasive Magnetothermal Excitation and Inhibition of Deep Brain Structures
脑深部结构的多位点非侵入性磁热激发和抑制
- 批准号:
9229172 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Evaluation of heat transfer enhancement on heat transfer device by magnetothermal force
磁热力强化传热装置的评价
- 批准号:
15K05838 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)