Developing and Testing a Learning Progression for Middle School Physical Science incorporating Disciplinary Core Ideas, Science and Engineering Practices, and Crosscutting Concepts
结合学科核心思想、科学和工程实践以及交叉概念,开发和测试中学物理科学的学习进度
基本信息
- 批准号:2201068
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will develop and test a learning progression for middle school physical science that incorporates the three dimensions identified in Next Generation of Science Standards (NGSS): the Disciplinary Core Ideas of matter, interaction, and energy; the Science and Engineering Practices of constructing explanations and developing and using models; and the Crosscutting Concepts of cause and effect and systems and system models. Bringing together all three NGSS dimensions is an innovation that allows for the project to explore the variety of learning pathways that students may follow as they apply scientific knowledge and practices to make sense of compelling phenomena or solve complex problems. This has the potential to help teachers, researchers, and curriculum developers improve how they support students. Participating middle school science teachers from a range of schools representing diverse communities will receive professional learning and guidelines using the learning progression to adapt their local curriculum and instruction materials. The project will examine students' learning growth over time and how teachers use the learning progression to support their students’ learning. This project serves the national interest by exploring how to support teachers in creating equitable and coherent learning environments and promoting all students' development in problem-solving and sense-making in science. This project advances research on learning progressions in two ways: by developing and testing a three-dimensional learning progression consistent with NGSS, and by exploring a variety of learning pathways within the proposed learning progression. The project explores three research questions: 1) How does the theoretically grounded learning progression change as a result of empirical evidence from teachers and students and feedback from experts? 2) In what ways do teachers use the learning progression to adapt their curriculum materials, instruction, and assessments to improve student knowledge-in-use? 3) In what ways and how do students' knowledge-in-use develop in the learning progression-based adapted classrooms? To address these questions, the project will design, revise, and finalize the learning progression iteratively using both qualitative and quantitative data sources across three years. Using data from students’ responses to classroom-embedded assessment tasks, the researchers will employ latent growth curve models to examine student knowledge-in-use development. Using data from teacher and student interviews, classroom observations, and teacher and student artifacts, the researchers will develop a case study that explores teachers' use of the learning progressions and how they adapt the learning progression to their local curriculum, instruction, and assessment materials to support student learning. The case study will also explore whether and how teacher adaptation affects student development. The learning progression will contribute to teaching and learning in science by guiding the development of curriculum, instruction, assessment, and professional learning in a coherent manner to provide all students opportunities to learn in science and support teachers to improve their local science learning systems. Findings from the project will expand the current knowledge and research on learning progression with multiple intermediate learning pathways for three-dimensional learning that provide all students the opportunity to learn in science. The Discovery Research preK-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering, and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将开发和测试中学物理科学的学习进度,其中包括下一代科学标准(NGSS)中确定的三个维度:物质、相互作用和能量的学科核心概念;构建解释、开发和使用模型的科学和工程实践;以及交叉因果概念和系统和系统模型。将NGSS的所有三个维度结合在一起是一项创新,使该项目能够探索学生在应用科学知识和实践来理解引人注目的现象或解决复杂问题时可能遵循的各种学习途径。这有可能帮助教师、研究人员和课程开发人员改进他们支持学生的方式。来自代表不同社区的一系列学校的参与中学科学教师将获得专业学习和指导方针,使用学习进度来调整他们当地的课程和教学材料。该项目将考察学生在一段时间内的学习成长情况,以及教师如何利用学习进度来支持学生的学习。该项目服务于国家利益,探索如何支持教师创造公平和连贯的学习环境,促进所有学生在解决问题和理解力方面的发展。该项目通过两种方式推进学习进度的研究:通过开发和测试与NGSS一致的三维学习进度,以及通过在所提议的学习进度中探索各种学习路径。该项目探索了三个研究问题:1)教师和学生的经验证据和专家的反馈如何改变理论上扎根的学习进度?2)教师如何利用学习进度来调整他们的课程材料、教学和评估以提高学生的使用中的知识?3)在基于学习进度的适应课堂中,学生的使用中的知识以什么方式和如何发展?为了解决这些问题,该项目将使用三年的定性和定量数据来源反复设计、修订和最终确定学习进度。使用学生对课堂评估任务的反应数据,研究人员将使用潜在增长曲线模型来检查学生使用中的知识的发展。研究人员将利用教师和学生访谈、课堂观察和教师和学生人工制品的数据,开发一个案例研究,探索教师使用学习进度的情况,以及他们如何使学习进度适应当地的课程、教学和评估材料,以支持学生的学习。该案例研究还将探讨教师适应是否以及如何影响学生的发展。学习进展将有助于科学的教与学,以协调一致的方式指导课程、教学、评估和专业学习的发展,为所有学生提供在科学中学习的机会,并支持教师改进其当地的科学学习系统。该项目的成果将扩大目前关于学习进展的知识和研究,为三维学习提供多个中间学习途径,为所有学生提供在科学中学习的机会。探索研究PRE-12计划(DRK-12)旨在通过研究和开发创新资源、模型和工具,显著提高Pre-K-12学生和教师在科学、技术、工程和数学(STEM)方面的学习和教学。DRK-12计划中的项目建立在STEM教育的基础研究和先前的研究和开发工作的基础上,为拟议的项目提供了理论和经验上的证明。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peng HE其他文献
Static and dynamic behavior of granite in split tension
劈裂张力下花岗岩的静态和动态行为
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Peng HE;Aiming XU;Gang CHEN;Yuchun KUANG - 通讯作者:
Yuchun KUANG
Peng HE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Cognitive Diagnosis in E-Learning: A Nonparametric Approach for Computerized Adaptive Testing
职业:电子学习中的认知诊断:计算机自适应测试的非参数方法
- 批准号:
2423762 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Toxicology-testing platform integrating immunocompetent in vitro/ex vivo modules with real-time sensing and machine learning based in silico models for life cycle assessment and SSbD
毒理学测试平台,将免疫活性体外/离体模块与基于硅模型的实时传感和机器学习相结合,用于生命周期评估和 SSbD
- 批准号:
10100967 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
EU-Funded
Testing for scale up: An Indigenous social and emotional learning program
扩大测试:土著社交和情感学习计划
- 批准号:
LP210301323 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Linkage Projects
CAREER: Learning, testing, and hardness via extremal geometric problems
职业:通过极值几何问题学习、测试和硬度
- 批准号:
2145800 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Testing and Deep Learning for Functional Data
功能数据的测试和深度学习
- 批准号:
2210891 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Program Behavior Representation Learning for Software Testing
软件测试的程序行为表示学习
- 批准号:
RGPIN-2020-04552 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
Identifying COVID-19 vaccine deserts using Machine Learning and Geospatial Analyses to target Community -engaged testing for vulnerable rural populations to prevent localized outbreaks
使用机器学习和地理空间分析识别 COVID-19 疫苗沙漠,以针对弱势农村人口进行社区参与测试,以防止局部疫情爆发
- 批准号:
10446844 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Testing and Debugging Machine Learning-based Autonomous Systems
测试和调试基于机器学习的自治系统
- 批准号:
RGPIN-2020-04035 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
Machine learning to identify non-invasive mechanical testing approaches to predict skin composition, micro-structure and progression of ageing
机器学习识别非侵入性机械测试方法来预测皮肤成分、微观结构和衰老进程
- 批准号:
2750253 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Studentship
Machine Learning for Efficient Regression Testing in Continuous Integration Context
在持续集成环境中进行高效回归测试的机器学习
- 批准号:
RGPIN-2022-05131 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual