CAREER: Learning, testing, and hardness via extremal geometric problems

职业:通过极值几何问题学习、测试和硬度

基本信息

  • 批准号:
    2145800
  • 负责人:
  • 金额:
    $ 40.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).If P differs from NP, there are many important computational problems that cannot be solved efficiently. Even more importantly for applications (because in practice exact solutions are often not needed), it is computationally hard even to approximately solve some of these problems. The field that studies this topic, known as "hardness of approximation," has progressed in leaps and bounds over the last two decades. One of the seminal achievements of the field was the forging of a deep connection between computational complexity and isoperimetric-type problems in geometry and probability. The isoperimetric problem in the plane -- which has been known and studied for more than 2 millenia -- asks which shape of a given area has a minimal perimeter (the answer: a circle). If there were a better understanding of certain probabilistic, high-dimensional variants of this problem, it would close several open problems in hardness of approximation. A better understanding of the limits of efficient approximate computation will in turn lead to better algorithms for real-world computational problems.This project is about strengthening the link between hardness of approximation, geometry and probability. By solving new optimal partitioning problems in geometry and probability, the investigator will develop algorithms and prove new algorithmic hardness results. One of the difficulties with these partitioning problems is the presence of combinatorially many saddle points or local minima, but the investigator's recent resolution (with E. Milman) of the Gaussian double-bubble conjecture included a new method to circumvent this difficulty. Algorithmic consequences of these optimal partitioning problems include (i) improved bounds for testing and learning geometric concept classes; (ii) improved algorithms for non-interactive correlation distillation (a problem in cryptography with applications to random beacons and information reconciliation); and (iii) a stronger separation between classical and quantum communication complexity. This award will allow graduate and undergraduate students to participate in related research projects, it will fund the development of open-source software for numerical computation, and it will support outreach activities for K-12 students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由《2021年美国救援计划法案》(公法117-2)资助。如果P不同于NP,就会有许多重要的计算问题无法有效解决。对于应用程序更重要的是(因为在实践中通常不需要精确的解决方案),甚至在计算上也很难近似地解决其中一些问题。研究这一主题的领域,被称为“近似硬度”,在过去的二十年里取得了突飞猛进的进展。该领域的开创性成就之一是在计算复杂性与几何和概率论中的等周型问题之间建立了深刻的联系。平面的等周问题——人们已经知道并研究了2000多年——问的是给定区域的哪种形状的周长最小(答案是:圆)。如果对这个问题的某些概率的、高维的变体有了更好的理解,它将在近似的硬度上解决几个开放的问题。更好地理解有效近似计算的极限将反过来导致更好的算法来解决现实世界的计算问题。这个项目是关于加强硬度的近似,几何和概率之间的联系。通过解决几何和概率中的新的最优划分问题,研究者将开发算法并证明新的算法硬度结果。这些划分问题的困难之一是存在组合的许多鞍点或局部最小值,但研究者最近(与E. Milman)对高斯双泡猜想的解决包括一种新的方法来绕过这个困难。这些最优划分问题的算法结果包括(i)改进了测试和学习几何概念类的边界;(ii)改进的非交互式相关蒸馏算法(应用于随机信标和信息协调的密码学中的一个问题);(iii)在经典和量子通信复杂性之间有更强的分离。该奖项将允许研究生和本科生参与相关研究项目,它将资助用于数值计算的开源软件的开发,并将支持K-12学生的推广活动。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Moderate deviations in cycle count
周期计数存在适度偏差
  • DOI:
    10.1002/rsa.21147
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Neeman, Joe;Radin, Charles;Sadun, Lorenzo
  • 通讯作者:
    Sadun, Lorenzo
Typical large graphs with given edge and triangle densities
具有给定边和三角形密度的典型大图
  • DOI:
    10.1007/s00440-023-01187-8
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Neeman, Joe;Radin, Charles;Sadun, Lorenzo
  • 通讯作者:
    Sadun, Lorenzo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph Neeman其他文献

Joseph Neeman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph Neeman', 18)}}的其他基金

Isoperimetric Clusters and Related Extremal Problems with Applications in Probability
等周簇和相关极值问题及其在概率中的应用
  • 批准号:
    2204449
  • 财政年份:
    2022
  • 资助金额:
    $ 40.75万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
  • 批准号:
    61572533
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
E-Learning中学习者情感补偿方法的研究
  • 批准号:
    61402392
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Cognitive Diagnosis in E-Learning: A Nonparametric Approach for Computerized Adaptive Testing
职业:电子学习中的认知诊断:计算机自适应测试的非参数方法
  • 批准号:
    2423762
  • 财政年份:
    2024
  • 资助金额:
    $ 40.75万
  • 项目类别:
    Continuing Grant
Frontocortical representations of amygdala-mediated learning under uncertainty
不确定性下杏仁核介导的学习的额皮质表征
  • 批准号:
    10825354
  • 财政年份:
    2024
  • 资助金额:
    $ 40.75万
  • 项目类别:
Toxicology-testing platform integrating immunocompetent in vitro/ex vivo modules with real-time sensing and machine learning based in silico models for life cycle assessment and SSbD
毒理学测试平台,将免疫活性体外/离体模块与基于硅模型的实时传感和机器学习相结合,用于生命周期评估和 SSbD
  • 批准号:
    10100967
  • 财政年份:
    2024
  • 资助金额:
    $ 40.75万
  • 项目类别:
    EU-Funded
Mechanisms of compartmentalized plasticity in learning and memory
学习和记忆的区隔可塑性机制
  • 批准号:
    10522519
  • 财政年份:
    2023
  • 资助金额:
    $ 40.75万
  • 项目类别:
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
  • 批准号:
    10699828
  • 财政年份:
    2023
  • 资助金额:
    $ 40.75万
  • 项目类别:
Neuronal mechanisms of model-based learning
基于模型的学习的神经机制
  • 批准号:
    10722261
  • 财政年份:
    2023
  • 资助金额:
    $ 40.75万
  • 项目类别:
An active learning framework for adaptive autism healthcare
适应性自闭症医疗保健的主动学习框架
  • 批准号:
    10716509
  • 财政年份:
    2023
  • 资助金额:
    $ 40.75万
  • 项目类别:
Integrative Analysis of Adaptive Information Processing and Learning-Dependent Circuit Reorganization in the Auditory System
听觉系统中自适应信息处理和学习依赖电路重组的综合分析
  • 批准号:
    10715925
  • 财政年份:
    2023
  • 资助金额:
    $ 40.75万
  • 项目类别:
Application of deep learning and novel survival models to predict MCI-to-AD dementia progression
应用深度学习和新型生存模型预测 MCI 至 AD 痴呆的进展
  • 批准号:
    10725359
  • 财政年份:
    2023
  • 资助金额:
    $ 40.75万
  • 项目类别:
In vivo calcium imaging during appetitive learning in HIV Tat transgenic mice exposed to cannabis
暴露于大麻的 HIV Tat 转基因小鼠食欲学习过程中的体内钙成像
  • 批准号:
    10696442
  • 财政年份:
    2023
  • 资助金额:
    $ 40.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了