Singularities in Arbitrary Characteristic and Positivity
任意特性和积极性中的奇点
基本信息
- 批准号:2201251
- 负责人:
- 金额:$ 18.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The project concerns questions in algebraic geometry and commutative algebra. Algebraic geometry is the study of algebraic varieties, which are solution sets for systems of polynomial equations. For example, in the xy-plane, the solutions for y=0 consist of all points along the x-axis, while the solutions for xy=0 consist of all points along both coordinate axes. Since the tangent line at the origin (0,0) is not defined for the algebraic variety defined by xy=0, we say that this variety has a singularity at the origin (0,0). The first goal of the present project is to further develop the theory of singularities of algebraic varieties and more general objects. The second goal is to build the tools and techniques necessary for this research program, which would have applications to other fundamental open questions in algebraic geometry and commutative algebra.The research will investigate singularities of algebraic varieties over arbitrary fields, or more generally of arbitrary Noetherian rings and schemes. Even when the primary interest is in non-singular complex algebraic varieties, working in this much more general context is often unavoidable. A major focus in the present project is to build the foundations necessary for birational geometry and the minimal model program for schemes of arbitrary characteristic. In previous work, the PI proved that Kodaira-type vanishing theorems hold for schemes in equal characteristic zero of arbitrary dimension and developed new methods to replace Kodaira-type vanishing theorems in positive characteristic. In the present project, the PI will apply the techniques from this previous work to study the behavior of singularities under flat morphisms. The PI will also investigate inversion of adjunction-type results for various classes of singularities. Finally, the PI plans to extend techniques in positive characteristic to study positivity of line bundles on algebraic varieties over arbitrary fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目涉及代数几何和交换代数的问题。代数几何是研究代数簇的学科,代数簇是多项式方程组的解集。例如,在xy平面中,y=0的解由沿x轴沿着的所有点组成,而xy=0的解由沿两个坐标轴沿着的所有点组成。由于在原点(0,0)处的切线对于xy=0定义的代数簇没有定义,我们说这个簇在原点(0,0)处有一个奇点。本项目的第一个目标是进一步发展代数簇和更一般对象的奇点理论。第二个目标是建立必要的工具和技术,这个研究计划,这将有应用到其他基本的开放问题在代数几何和交换代数。研究将调查奇异的代数簇在任意领域,或更一般的任意Noether环和计划。即使主要的兴趣是在非奇异复代数簇,在这个更一般的背景下工作往往是不可避免的。本项目的一个主要重点是建立必要的基础,双有理几何和最小模型计划的任意特性。在以前的工作中,PI证明了Kodaira型消失定理对任意维数的等特征零点格式成立,并发展了新的方法来取代Kodaira型消失定理的正特征。在本项目中,PI将应用以前工作中的技术来研究平坦态射下奇点的行为。PI还将研究各类奇异点的附加类型结果的反演。最后,PI计划扩展技术的积极特征,以研究积极的线丛代数簇在任意field.This奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Takumi Murayama其他文献
ZVS-D級インバータにおけるMOSFETの逆並列ダイオードの活用によるZVSの実現
ZVS-D级逆变器中利用MOSFET反并联二极管实现ZVS
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Takumi Murayama;Xiuqin Wei;and Hiroo Sekiya;魏秀欽 - 通讯作者:
魏秀欽
2 TAKUMI MURAYAMA acyclic complexes
2 村山匠无环配合物
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Takumi Murayama - 通讯作者:
Takumi Murayama
Takumi Murayama的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Takumi Murayama', 18)}}的其他基金
相似海外基金
DURABILITY MODELLING OF COMPOSITE STRUCTURES WITH ARBITRARY LAY-UP USING STANDARDIZED TESTING AND ARTIFICIAL INTELLIGENCE (D-STANDART)
使用标准化测试和人工智能(D-STANDART)对任意铺设的复合结构进行耐久性建模
- 批准号:
10048912 - 财政年份:2023
- 资助金额:
$ 18.34万 - 项目类别:
EU-Funded
Novel Computational Methods for Design Under Uncertainty with Arbitrary Dependent Probability Distributions
具有任意相关概率分布的不确定性设计的新颖计算方法
- 批准号:
2317172 - 财政年份:2023
- 资助金额:
$ 18.34万 - 项目类别:
Standard Grant
Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持不连续伽辽金方法
- 批准号:
2309591 - 财政年份:2023
- 资助金额:
$ 18.34万 - 项目类别:
Standard Grant
Development of rational evaluation method for prestressing in concrete structures with arbitrary configuration
任意构型混凝土结构预应力合理评价方法的建立
- 批准号:
23K03996 - 财政年份:2023
- 资助金额:
$ 18.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic geometry over arbitrary (in particular, non-algebraically closed) fields
任意(特别是非代数闭)域上的代数几何
- 批准号:
2886391 - 财政年份:2023
- 资助金额:
$ 18.34万 - 项目类别:
Studentship
Arbitrary arrangement of cells using photo-response of narrow-gap semiconductors
利用窄带隙半导体的光响应任意排列电池
- 批准号:
23H01715 - 财政年份:2023
- 资助金额:
$ 18.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
DURABILITY MODELLING OF COMPOSITE STRUCTURES WITH ARBITRARY LAY-UP USING STANDARDIZED TESTING AND ARTIFICIAL INTELLIGENCE
使用标准化测试和人工智能对任意铺设的复合结构进行耐久性建模
- 批准号:
10063968 - 财政年份:2023
- 资助金额:
$ 18.34万 - 项目类别:
EU-Funded
Study of manipulator with load compensation mechanism for arbitrary loads that can be driven by a single motor
单电机驱动任意负载的带负载补偿机构的机械手研究
- 批准号:
23K13300 - 财政年份:2023
- 资助金额:
$ 18.34万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
DURABILITY MODELLING OF COMPOSITE STRUCTURES WITH ARBITRARY LAY-UP USING STANDARDIZED TESTING AND ARTIFICIAL INTELLIGENCE (D-STANDART)
使用标准化测试和人工智能(D-STANDART)对任意铺设的复合结构进行耐久性建模
- 批准号:
10048718 - 财政年份:2023
- 资助金额:
$ 18.34万 - 项目类别:
EU-Funded
Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持间断伽辽金方法
- 批准号:
2309590 - 财政年份:2023
- 资助金额:
$ 18.34万 - 项目类别:
Standard Grant