Symmetries and Statistics in Arithmetic
算术中的对称性和统计
基本信息
- 批准号:2201346
- 负责人:
- 金额:$ 16.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Number fields, algebraic structures associated with the roots of polynomials, are important objects in algebraic number theory. A crucial component in studying these algebraic structures is to understand interesting invariants of it, and the symmetry of the number field heavily influences the behavior of these invariants. More precisely, although the invariants can be mysterious and random for a single number field, as in a family, their statistics obey certain distributions determined by this symmetry. The goal of this project is to study these invariants utilizing their symmetry from a statistical point of view. In particular, this research will prove new results on invariants for number fields with special symmetry, discover new phenomena in arithmetic structures motivated by statistical results, and propose new statistical measurements of these invariants. This project will also include research opportunities for graduates, undergraduates and postdocs, and will facilitate in-depth conversations between the analytic and algebraic sides of number theory. More concretely, this project will investigate distribution results for discriminants and class groups of global fields with a fixed Galois group, using tools from algebraic number theory and analytic number theory. For the distribution of discriminants, this project will prove new asymptotic distribution, upper bound and lower bound using relative invariants and inductive ideas. It will also include discussions of global fields with different characters and symmetry. For the distribution of class groups, this project will study both extremal behavior for a single number field and statistical behavior for a family of number fields. It includes investigating new existence-type arithmetic questions and representation theory questions suggested by distribution problems. On the other hand, this project will propose and study generalizations and variations of the class number problems. Finally, this project will also address fundamental questions on the distribution of roots of polynomials. This includes giving sharp inequalities leading to equidistribution results and constructing optimal root distributions with respect to various functionals.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数域是与多项式根相关的代数结构,是代数数论的重要研究对象。研究这些代数结构的一个关键组成部分是理解它的有趣的不变量,数域的对称性严重影响这些不变量的行为。更确切地说,虽然不变量对于一个数域来说可能是神秘和随机的,就像在一个族中一样,但它们的统计服从由这种对称性决定的某些分布。这个项目的目标是研究这些不变量利用他们的对称性从统计的角度来看。特别是,这项研究将证明新的结果不变量的数域具有特殊的对称性,发现新的现象,算术结构的统计结果的动机,并提出新的统计测量这些不变量。该项目还将包括研究生,本科生和博士后的研究机会,并将促进数论的分析和代数方面之间的深入对话。更具体地说,本项目将使用代数数论和解析数论的工具,研究具有固定伽罗瓦群的全局域的判别式和类群的分布结果。对于判别式的分布,本计画将利用相对不变量与归纳的思想,证明新的渐近分布、上界与下界。它也将包括具有不同特征和对称性的全局场的讨论。对于类群的分布,本专题将研究单个数域的极值行为和数域族的统计行为。它包括研究新的存在型算术问题和由分布问题提出的表示论问题。另一方面,本项目将提出并研究类数问题的推广和变化。最后,这个项目还将解决关于多项式根的分布的基本问题。这包括给出导致等分布结果的尖锐不等式,以及构建各种泛函的最优根分布。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generalized Bockstein maps and Massey products
广义 Bockstein 地图和 Massey 产品
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Lam, Yeuk Hay;Liu, Yuan;Sharifi, Romyar;Wake, Preston;Wang, Jiuya
- 通讯作者:Wang, Jiuya
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiuya Wang其他文献
Malle's Conjecture for $G \times A$, with $G = S_3, S_4, S_5$
Malle 对 $G imes A$ 的猜想,其中 $G = S_3, S_4, S_5$
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
R. Masri;F. Thorne;Wei;Jiuya Wang - 通讯作者:
Jiuya Wang
ℓ-torsion bounds for the class group of number fields with an ℓ-group as Galois group
数域类群的 ℓ-扭转界,其中 ℓ-群为伽罗瓦群
- DOI:
10.1090/proc/15882 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Jürgen Klüners;Jiuya Wang - 通讯作者:
Jiuya Wang
The Residually Indistinguishable Case of Ribet's Method for GL2
GL2 的 Ribet 方法的剩余不可区分情况
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
S. Dasgupta;M. Kakde;Jesse Silliman;Jiuya Wang - 通讯作者:
Jiuya Wang
Improved bounds on number fields of small degree
改进小次数数域的界限
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
T. Anderson;A. Gafni;Kevin A. Hughes;R. Oliver;David Lowry;F. Thorne;Jiuya Wang;Ruixiang Zhang - 通讯作者:
Ruixiang Zhang
Secondary Term of Asymptotic Distribution of $S_3\times A$ Extensions over $\mathbb{Q}$
$S_3 imes A$ 渐近分布在 $mathbb{Q}$ 上的扩展的二次项
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Jiuya Wang - 通讯作者:
Jiuya Wang
Jiuya Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational points on modular curves, and the geometry of arithmetic statistics
模曲线上的有理点和算术统计的几何
- 批准号:
2302356 - 财政年份:2023
- 资助金额:
$ 16.26万 - 项目类别:
Continuing Grant
Arithmetic Statistics, Fourier Analysis, and Equidistribution
算术统计、傅立叶分析和均匀分布
- 批准号:
2302590 - 财政年份:2023
- 资助金额:
$ 16.26万 - 项目类别:
Continuing Grant
Geometry of Arithmetic Statistics and Related Topics
算术统计几何及相关主题
- 批准号:
2301386 - 财政年份:2023
- 资助金额:
$ 16.26万 - 项目类别:
Continuing Grant
Applications of Analytic Uniformity in Arithmetic Statistics
分析均匀性在算术统计中的应用
- 批准号:
2200760 - 财政年份:2022
- 资助金额:
$ 16.26万 - 项目类别:
Standard Grant
Arithmetic Statistics and Analytic Number Theory
算术统计与解析数论
- 批准号:
RGPIN-2017-06589 - 财政年份:2022
- 资助金额:
$ 16.26万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Statistics: Asymptotics on number fields and their class groups
算术统计:数域及其类群的渐近
- 批准号:
RGPIN-2020-06146 - 财政年份:2022
- 资助金额:
$ 16.26万 - 项目类别:
Discovery Grants Program - Individual
Galois Structures and Arithmetic Statistics
伽罗瓦结构和算术统计
- 批准号:
2200541 - 财政年份:2022
- 资助金额:
$ 16.26万 - 项目类别:
Standard Grant
Arithmetic statistics of Selmer groups with a Galois action
具有伽罗瓦动作的 Selmer 群的算术统计
- 批准号:
2742677 - 财政年份:2022
- 资助金额:
$ 16.26万 - 项目类别:
Studentship
Arithmetic statistics of noncommutative modular symbols
非交换模符号的算术统计
- 批准号:
459838152 - 财政年份:2021
- 资助金额:
$ 16.26万 - 项目类别:
WBP Fellowship
Local-global principles: arithmetic statistics and obstructions
局部全局原则:算术统计和障碍
- 批准号:
EP/S004696/2 - 财政年份:2021
- 资助金额:
$ 16.26万 - 项目类别:
Research Grant