Galois Structures and Arithmetic Statistics

伽罗瓦结构和算术统计

基本信息

  • 批准号:
    2200541
  • 负责人:
  • 金额:
    $ 14.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

The study of algebraic number fields, mathematical objects obtained from the solutions of polynomials with integer coefficients, is a very active area of research in number theory. Associated to each algebraic number field, there is an invariant, the class group, that measures the complexity of the number field structure. While computation of the class group is hard in general, numerical evidence suggests that the class group is "random" when ranging over a reasonable family of number fields, and this randomness behavior is studied in a recently active area – arithmetic statistics. One way to study this random invariant is to construct a random model which contains key parameters and use the model to simulate the distributions of class groups. This project will explore various questions about the constructions of such random models and their applications. The project also provides support for an undergraduate research experience. The research in this project is at the intersection of algebraic number theory, arithmetic statistics, group theory, and probability theory. The PI and her collaborators have produced a series of works on the non-abelian Cohen--Lenstra heuristics to give reasonable conjectures to predict the distributions of the Galois groups of the maximal unramified extensions of global fields (which are non-abelian generalizations of class groups). In particular, the non-abelian random group models constructed in this work play an important role in connecting the Galois objects with their arithmetic statistics. The PI plans to continue working along this direction, which includes: deeply studying the Galois structures of unramified extensions, proving properties of the Galois structure that are implied by the new arithmetical statistical heuristics, and studying how the random group models are affected by removing some restrictions in previous work. Explicitly, this project has three key goals: 1) modify the non-abelian Cohen—Lenstra heuristics in the case when the base field contains roots of unity; 2) study how the signature of the base field affects the distribution, and 3) generalize Gerth's conjecture.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
代数数域是由整系数多项式的解所得到的数学对象,它的研究是数论中一个非常活跃的研究领域。每个代数数域都有一个不变量,即类群,它度量数域结构的复杂性。虽然计算的类组是很难在一般情况下,数值证据表明,类组是“随机”时,范围在一个合理的家庭的数域,这种随机行为是研究在最近活跃的领域-算术统计。研究这一随机不变量的一种方法是构造一个包含关键参数的随机模型,并用该模型模拟类组的分布。本项目将探讨有关这种随机模型的构造及其应用的各种问题。该项目还为本科生的研究经验提供支持。该项目的研究是在代数数论,算术统计,群论和概率论的交叉点。PI和她的合作者已经产生了一系列关于非交换的Cohen-Lenstra算法的工作,以给出合理的结构来预测全局域的最大非分歧扩张的伽罗瓦群的分布(这是类群的非交换推广)。特别是,在这项工作中构建的非阿贝尔随机群模型在连接伽罗瓦对象与它们的算术统计中发挥了重要作用。PI计划继续沿着这一方向开展工作,包括:深入研究非分歧扩张的Galois结构,证明新的算术统计算法所隐含的Galois结构的性质,以及研究去除以前工作中的一些限制对随机群模型的影响。说明一下,这个项目有三个主要目标:1)在基域包含单位根的情况下,修改非交换的Cohen-Lenstra算法; 2)研究基场的特征如何影响分布,和3)这个奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuan Liu其他文献

Dynamic Spectrum Anti-Jamming with Reinforcement Learning Based on Value Function Approximation
基于值函数逼近的强化学习动态频谱抗干扰
  • DOI:
    10.1109/lwc.2022.3228045
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Xinyu Zhu;Yang Huang;Shaoyu Wang;Qihui Wu;Xiaohu Ge;Yuan Liu;Zhen Gao
  • 通讯作者:
    Zhen Gao
Implicit surface reconstruction with total variation regularization
具有全变分正则化的隐式曲面重构
  • DOI:
    10.1016/j.cagd.2017.02.005
  • 发表时间:
    2017-03
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Yuan Liu;Yanzhi Song;Zhouwang Yang;Jiansong Deng
  • 通讯作者:
    Jiansong Deng
Box-Office Prediction Based on Essential Features Extracted from Agent-Based Modeling
基于从基于主体的建模中提取的基本特征的票房预测
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xin Zhou;Shigeo Matsubara;Qidong Liu;Yuan Liu;Gang Huang;Kentaro Takahira and Shigeo Matsubara;Yuto Iwata and Shigeo Matsubara;Yuya Itoh and Shigeo Matsubara;Koh Satoh and Shigeo Matsubara
  • 通讯作者:
    Koh Satoh and Shigeo Matsubara
Palladium-Catalyzed Divergent Imidoylative Cyclization of Multifunctionalized Isocyanides: Tunable Access to Oxazol-5(4H)-ones and Cyclic Ketoimines
钯催化多官能化异氰化物的发散亚胺酰化环化:可调节地获得恶唑-5(4H)-酮和环状酮亚胺
  • DOI:
    10.1021/acs.joc.0c00672
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Jian Wang;Ling Zhong;Shi Tang;Yuan Liu;Shumin Ding;Lianjie Li;Haixia Zhao;Chen;Yongjia Shang
  • 通讯作者:
    Yongjia Shang
Noncontact Multi-Target Respiration Sensing Using SIMO Radar With UBSS Method
使用 SIMO 雷达和 UBSS 方法进行非接触式多目标呼吸传感

Yuan Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuan Liu', 18)}}的其他基金

LEAPS-MPS: Robust and High Order Numerical Simulation for Phase Field Modeling
LEAPS-MPS:相场建模的鲁棒高阶数值模拟
  • 批准号:
    2213436
  • 财政年份:
    2022
  • 资助金额:
    $ 14.14万
  • 项目类别:
    Standard Grant

相似海外基金

Algebraic Structures and the Arithmetic of Fields
代数结构和域的算术
  • 批准号:
    2401018
  • 财政年份:
    2023
  • 资助金额:
    $ 14.14万
  • 项目类别:
    Continuing Grant
NSF-BSF: Derived and quantum corrected structures on arithmetic and geometric moduli
NSF-BSF:算术和几何模量的导出和量子校正结构
  • 批准号:
    2200914
  • 财政年份:
    2022
  • 资助金额:
    $ 14.14万
  • 项目类别:
    Continuing Grant
Arithmetic and Topological Structures in Physics
物理学中的算术和拓扑结构
  • 批准号:
    2104330
  • 财政年份:
    2021
  • 资助金额:
    $ 14.14万
  • 项目类别:
    Continuing Grant
CAREER: The Arithmetic of Fields and the Complexity of Algebraic Structures
职业:域算术和代数结构的复杂性
  • 批准号:
    2049180
  • 财政年份:
    2019
  • 资助金额:
    $ 14.14万
  • 项目类别:
    Continuing Grant
Algebraic Structures and the Arithmetic of Fields
代数结构和域的算术
  • 批准号:
    1902144
  • 财政年份:
    2019
  • 资助金额:
    $ 14.14万
  • 项目类别:
    Continuing Grant
Arithmetic Extension Classes Associated with Projective Structures (B03)
与射影结构相关的算术扩展类(B03)
  • 批准号:
    247976571
  • 财政年份:
    2014
  • 资助金额:
    $ 14.14万
  • 项目类别:
    Collaborative Research Centres
Analysis of the structures of Iwasawa modules by arithmetic special elements
用算术特殊元素分析岩泽模的结构
  • 批准号:
    25400013
  • 财政年份:
    2013
  • 资助金额:
    $ 14.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: The Arithmetic of Fields and the Complexity of Algebraic Structures
职业:域算术和代数结构的复杂性
  • 批准号:
    1151252
  • 财政年份:
    2012
  • 资助金额:
    $ 14.14万
  • 项目类别:
    Continuing Grant
Integral structures of arithmetic differential equations and geometries behind them
算术微分方程的积分结构及其背后的几何
  • 批准号:
    24654002
  • 财政年份:
    2012
  • 资助金额:
    $ 14.14万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Geometric structures over the absolute point and their arithmetic
绝对点上的几何结构及其算术
  • 批准号:
    1069218
  • 财政年份:
    2011
  • 资助金额:
    $ 14.14万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了