CC* Compute: GPU-based Computation and Data Enabled Research and Education (G-CoDERE) at PSU
CC* 计算:PSU 基于 GPU 的计算和数据支持的研究和教育 (G-CoDERE)
基本信息
- 批准号:2019216
- 负责人:
- 金额:$ 39.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Data and computationally intensive research and education is increasingly important at Portland State University (PSU). Scientists and students at PSU are producing massive quantities of data and investigating machine learning and data science approaches to research problems in many different fields. Graphics processing units (GPUs) excel at large-scale parallel computing and are critical for analyzing and visualizing such massive quantities of research data and developing data-driven technologies. This project establishes PSU's first GPU computing infrastructure and will support PSU research groups in a wide variety of fields, including Computer Science, ECE, Physics, Chemistry, Statistics, and Speech & Hearing Science, and benefit researchers in partner universities, including Oregon Health and Science University and Lewis & Clark University. It provides undergraduates, graduate students, and postdoctoral researchers new training opportunities for data-driven research; enables the creation of new machine learning, data analytics, and visualization courses; and supports upgrading existing courses with emerging data-driven paradigm. It facilitates the K12 outreach programs such as Oregon Mathematics, Engineering, Science Achievement and Saturday Academy’s Apprenticeships in Science and Engineering with GPU-enabled project and internship opportunities. This infrastructure allows PSU, Oregon's most diverse public university, to provide the state-of-the-art GPU facility and learning opportunities to students from underrepresented groups.This project establishes PSU's first GPU computing infrastructure by acquiring twenty GPU servers with the related high-performance data storage. This GPU infrastructure complements PSU's Coeus high-performance computing cluster to support GPU-enabled research and education at PSU and share with external users through the Open Science Grid.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数据和计算密集型的研究和教育在波特兰州立大学(PSU)越来越重要。PSU的科学家和学生正在产生大量数据,并研究机器学习和数据科学方法,以研究许多不同领域的问题。图形处理器(GPU)擅长大规模并行计算,对于分析和可视化如此大量的研究数据以及开发数据驱动技术至关重要。该项目建立了PSU的第一个GPU计算基础设施,并将支持PSU在各种领域的研究小组,包括计算机科学,ECE,物理,化学,统计和语音听力科学,并使合作大学的研究人员受益,包括俄勒冈州健康与科学大学和刘易斯克拉克大学。它为本科生,研究生和博士后研究人员提供了数据驱动研究的新培训机会;能够创建新的机器学习,数据分析和可视化课程;并支持用新兴的数据驱动范式升级现有课程。它促进了K12外展计划,如俄勒冈州数学,工程,科学成就和周六学院的科学和工程学徒与GPU启用的项目和实习机会。该基础设施使俄勒冈州最多元化的公立大学PSU能够为代表性不足的群体的学生提供最先进的GPU设施和学习机会。该项目通过购买二十台GPU建立了PSU的第一个GPU计算基础设施服务器以及相关的高性能数据存储。该GPU基础设施补充了PSU的Coeus高性能计算集群,以支持PSU支持GPU的研究和教育,并通过开放科学网格与外部用户共享。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feng Liu其他文献
Functional characterization of mitochondrial and cytosolic aldehyde dehydrogenases in maize (Zea mays L)
玉米线粒体和胞质醛脱氢酶的功能特征(Zea mays L)
- DOI:
10.31274/rtd-180813-11364 - 发表时间:
2002 - 期刊:
- 影响因子:7.5
- 作者:
Feng Liu - 通讯作者:
Feng Liu
Nitrogen–phosphorus co-doped hollow carbon microspheres with hierarchical micro–meso– macroporous shells as efficient electrodes for supercapacitors
具有分层微-介观-大孔壳的氮磷共掺杂空心碳微球作为超级电容器的高效电极
- DOI:
10.1039/c7ta07488c - 发表时间:
2017 - 期刊:
- 影响因子:11.9
- 作者:
Ning Zhang;Feng Liu;Shi-Da Xu;Feng-Yun Wang;Qing Yu;Lei Liu - 通讯作者:
Lei Liu
Impact of process parameters on subsurface crack growth in brittle materials grinding
工艺参数对脆性材料磨削中亚表面裂纹扩展的影响
- DOI:
10.1007/s00419-016-1187-8 - 发表时间:
2017-02 - 期刊:
- 影响因子:2.8
- 作者:
Jianbin Chen;Qihong Fang;Jianke Du;Chao Xie;Feng Liu - 通讯作者:
Feng Liu
Bifurcation analysis and impulsive control of genetic regulatory networks with multi delays
多延迟遗传调控网络的分岔分析与脉冲控制
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0.7
- 作者:
Feng Liu;Jie Ren;Ting Dong;Shiqi Zheng - 通讯作者:
Shiqi Zheng
Bending Strain Engineering of Spin Transport in Quantum Spin Hall Systems
量子自旋霍尔系统中自旋输运的弯曲应变工程
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:16.6
- 作者:
Bing Huang;Kyung-Hwan Jin;Bin Cui;Feng Zhai;Jiawei Mei;Feng Liu - 通讯作者:
Feng Liu
Feng Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Feng Liu', 18)}}的其他基金
CGV: Small: Towards Computational Stereoscopic Cinematography
CGV:小:迈向计算立体电影摄影
- 批准号:
1321119 - 财政年份:2013
- 资助金额:
$ 39.59万 - 项目类别:
Continuing Grant
II-NEW: An Infrastructure to Support Advanced Computational Stereoscopic Cinematography and System
II-新:支持先进计算立体电影和系统的基础设施
- 批准号:
1205746 - 财政年份:2012
- 资助金额:
$ 39.59万 - 项目类别:
Standard Grant
Materials World Network: Interplay Between Quantum Size Effect and Strain Effect on Growth of Nanoscle Metal Thin Films
材料世界网络:量子尺寸效应和应变效应对纳米金属薄膜生长的相互作用
- 批准号:
0909212 - 财政年份:2009
- 资助金额:
$ 39.59万 - 项目类别:
Continuing Grant
Design and Creation of Nanomechanical Architectures from Folding of Ultrathin Bi-layer Films
通过超薄双层薄膜的折叠设计和创建纳米机械结构
- 批准号:
0652461 - 财政年份:2007
- 资助金额:
$ 39.59万 - 项目类别:
Standard Grant
Theoretical Study of Growing Metal and Semiconductor Nanostructures on Molecule Corrals
分子围栏上生长金属和半导体纳米结构的理论研究
- 批准号:
0307000 - 财政年份:2003
- 资助金额:
$ 39.59万 - 项目类别:
Continuing Grant
Research Initiation Award: New Multigrid Navier-Stokes Methods for Predicting Unsteady Flows in Turbomachinery Cascades
研究启动奖:用于预测涡轮机叶栅不稳定流动的新型多重网格纳维-斯托克斯方法
- 批准号:
9410800 - 财政年份:1994
- 资助金额:
$ 39.59万 - 项目类别:
Standard Grant
相似海外基金
CC* Campus Compute: Interdisciplinary GPU-Enabled Compute
CC* 校园计算:支持 GPU 的跨学科计算
- 批准号:
2346343 - 财政年份:2024
- 资助金额:
$ 39.59万 - 项目类别:
Standard Grant
Equipment: CC Campus Compute: Expansion of GPU Compute Capacity for NC State University HPC to Support Research and Education
设备:CC Campus Compute:扩展北卡罗来纳州立大学 HPC 的 GPU 计算能力以支持研究和教育
- 批准号:
2321565 - 财政年份:2023
- 资助金额:
$ 39.59万 - 项目类别:
Standard Grant
Cheminformatics Subgraph Matching via GPU Compute
通过 GPU 计算进行化学信息学子图匹配
- 批准号:
2751042 - 财政年份:2022
- 资助金额:
$ 39.59万 - 项目类别:
Studentship
CC* Compute: The MSU Data Machine - a high-memory, GPU-enabled compute cluster for data-intensive and AI applications
CC* 计算:MSU 数据机 - 一个高内存、支持 GPU 的计算集群,适用于数据密集型和人工智能应用程序
- 批准号:
2200792 - 财政年份:2022
- 资助金额:
$ 39.59万 - 项目类别:
Standard Grant
CC* Compute: Augmenting a 2,560-core EPYC2 Computational Cluster with GPUs for AI, Machine Learning, and other GPU-Accelerated HPC Applications
CC* 计算:使用 GPU 增强 2,560 核 EPYC2 计算集群,用于人工智能、机器学习和其他 GPU 加速的 HPC 应用
- 批准号:
2201497 - 财政年份:2022
- 资助金额:
$ 39.59万 - 项目类别:
Standard Grant
CC* Compute: GPU HPC Cluster Partition for Research, Education, and Student Success
CC* 计算:GPU HPC 集群分区促进研究、教育和学生的成功
- 批准号:
2201435 - 财政年份:2022
- 资助金额:
$ 39.59万 - 项目类别:
Standard Grant
CC* Compute: GPU Infrastructure to Explore New Algorithmic & AI Methods in Data-Driven Science and Engineering at Tufts University
CC* 计算:探索新算法的 GPU 基础设施
- 批准号:
2018149 - 财政年份:2020
- 资助金额:
$ 39.59万 - 项目类别:
Standard Grant
CC* Compute: A High Performance GPU Cluster at Syracuse University
CC* 计算:雪城大学的高性能 GPU 集群
- 批准号:
2018822 - 财政年份:2020
- 资助金额:
$ 39.59万 - 项目类别:
Standard Grant
CC* Compute: Deep Bayou: Accelerating Scientific Discoveries with A GPU Cluster
CC* 计算:Deep Bayou:利用 GPU 集群加速科学发现
- 批准号:
2020446 - 财政年份:2020
- 资助金额:
$ 39.59万 - 项目类别:
Standard Grant