Trans-modal Analysis: A Mathematical and Computational Framework for Equity Assessment of Multi-modal STEM Learning Processes
跨模态分析:多模态 STEM 学习过程公平评估的数学和计算框架
基本信息
- 批准号:2201723
- 负责人:
- 金额:$ 250万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-15 至 2027-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In modern classrooms, students learn science, technology, engineering, and mathematics (STEM) through interactions not only with teachers and textbooks but also with computer games and simulations, automated tutors, and online resources. Education researchers thus have access to large amounts of data about students’ STEM learning processes, from classroom or online conversations to detailed records of student activity in educational apps. Despite the potential of such rich data for curriculum development and personalized assessment, there are significant technical and conceptual challenges to analyzing data that come from different sources or modalities. To address these challenges, this project will develop and test trans-modal analysis (TMA). TMA is a statistical technique and software package that will help researchers better and more easily integrate multiple types of data into analyses of STEM learning. This will enable more accurate understanding of students’ STEM learning processes, and in turn help identify potential inequities in assessment of student learning, informing education policy and practice for diverse learners. This project will include post-doctoral scholars, graduate student researchers, and undergraduate research interns, who will develop skills and experience in data science, learning analytics, software development, and scientific communication, providing training and mentoring for the next generation of education researchers. Although most analyses of learning processes are based on a single type or modality of data, STEM learning typically takes place in a multimodal setting. Models of STEM learning processes thus need to account for multiple sources and types of data to account for complex interactions between learners and the setting(s) in which they learn. For example, there are different types of events (questions from a teacher, chats with a peer, views of a resource) and different properties of events (gender of a person gesturing, linguistic fluency of a speaker, reading level of a person reading a document) that may influence future events with more or less impact over time. In addition, the structure of a learning environment creates a horizon of observation for each student, making some events (e.g., a conversation in another group of students) more or less visible. Finally, different characteristics of students (age, cultural or ethnic background, gender identification, whether instruction is in their native language or a non-native language) may lead them to respond to events in different ways. Extant learning analytic techniques account for the influence of prior events by lagging: for example, using some fixed number of prior events to predict future events. TMA will enable those same techniques to operate not on properties of the events themselves but on underlying functions that represent claims or hypotheses about the interaction between different learning modalities, the structure of the learning environment, and the ways in which students might systematically differ as STEM learners. The project team hypothesizes that TMA models will provide a more nuanced, more accurate, and more equitable view of STEM learning processes for diverse learners. This approach will expand the understanding of effective multi-modal STEM learning processes and allow researchers to account for diversity and address questions of equity in multi-modal STEM learning. TMA will be developed and tested first as a set of algorithms for conducting trans-modal analyses with three widely used learning analytic tools: process mining, epistemic network analysis, and dynamic Bayesian networks. The investigators aim to use simulation studies and the analysis of actual STEM learning datasets to address two fundamental research questions regarding the science of learning: (1) Under what conditions (if any) are trans-modal models of STEM learning processes more informative than uni-modal models? And (2) Can TMA model meaningful differences in trans-modal learning processes for minoritized groups of STEM learners?This project is supported by NSF's EHR Core Research (ECR) program. The ECR program emphasizes fundamental STEM education research that generates foundational knowledge in the field. Investments are made in critical areas that are essential, broad and enduring: STEM learning and STEM learning environments, broadening participation in STEM, and STEM workforce development. The program supports the accumulation of robust evidence to inform efforts to understand, build theory to explain, and suggest intervention and innovations to address persistent challenges in education.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在现代课堂上,学生学习科学,技术,工程和数学(STEM),不仅通过与教师和教科书的互动,还通过计算机游戏和模拟,自动导师和在线资源。因此,教育研究人员可以访问有关学生STEM学习过程的大量数据,从课堂或在线对话到教育应用程序中学生活动的详细记录。尽管如此丰富的数据对于课程开发和个性化评估具有潜力,但分析来自不同来源或模式的数据存在重大的技术和概念挑战。为了应对这些挑战,该项目将开发和测试跨模态分析(TMA)。TMA是一种统计技术和软件包,将帮助研究人员更好,更容易地将多种类型的数据整合到STEM学习分析中。这将有助于更准确地了解学生的STEM学习过程,进而有助于识别学生学习评估中的潜在不平等,为不同学习者的教育政策和实践提供信息。该项目将包括博士后学者,研究生研究人员和本科研究实习生,他们将发展数据科学,学习分析,软件开发和科学传播方面的技能和经验,为下一代教育研究人员提供培训和指导。虽然大多数学习过程的分析都是基于单一类型或模式的数据,但STEM学习通常发生在多模式环境中。因此,STEM学习过程的模型需要考虑多种来源和类型的数据,以考虑学习者与他们学习的环境之间的复杂互动。例如,存在不同类型的事件(来自老师的问题、与同伴的聊天、对资源的看法)和不同的事件属性(做手势的人的性别、说话者的语言流利度、阅读文档的人的阅读水平),其可能随着时间的推移以或多或少的影响来影响未来的事件。此外,学习环境的结构为每个学生创造了一个观察的视野,使一些事件(例如,另一组学生的对话)或多或少可见。最后,学生的不同特点(年龄、文化或种族背景、性别认同、教学是用母语还是非母语)可能导致他们以不同的方式对事件作出反应。现存的学习分析技术通过滞后来解释先前事件的影响:例如,使用一些固定数量的先前事件来预测未来事件。TMA将使这些相同的技术不依赖于事件本身的属性,而是依赖于代表不同学习模式之间相互作用的主张或假设的基本功能,学习环境的结构,以及学生作为STEM学习者可能系统性差异的方式。项目团队假设,TMA模型将为不同的学习者提供更细致、更准确、更公平的STEM学习过程视图。这种方法将扩大对有效的多模式STEM学习过程的理解,并允许研究人员考虑多样性并解决多模式STEM学习中的公平问题。TMA将首先作为一组算法进行开发和测试,用于使用三种广泛使用的学习分析工具进行跨模态分析:过程挖掘,认知网络分析和动态贝叶斯网络。研究人员的目标是使用模拟研究和对实际STEM学习数据集的分析来解决关于学习科学的两个基本研究问题:(1)在什么条件下(如果有的话),STEM学习过程的跨模态模型比单峰模型更能提供信息?以及(2)TMA能否为少数STEM学习者群体的跨模态学习过程建模?该项目由NSF的EHR核心研究(ECR)计划支持。ECR计划强调基础STEM教育研究,产生该领域的基础知识。投资是在关键领域是必不可少的,广泛的和持久的:干学习和干学习环境,扩大参与干,干劳动力发展。该计划支持积累强有力的证据,为理解、建立理论解释、提出干预和创新建议以应对教育中持续存在的挑战提供信息。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The role of data simulation in quatitative ethnography
数据模拟在定量民族志中的作用
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Swiecki, Z. &
- 通讯作者:Swiecki, Z. &
Ordered network analysis
有序网络分析
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Tan, Y.;Ruis, A.R.;Marquart, C.L.;Cai, Z.;Knowles, M.;Shaffer, D.W.
- 通讯作者:Shaffer, D.W.
Mediating and perspective-taking manipulatives: Fostering dynamic perspective-taking by mediating dialogic thinking and bolstering empathy in role-play and reflection for microteaching
调解和观点采择操作:通过调解对话思维并增强角色扮演和微格教学反思中的同理心来培养动态的观点采择
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Mochizuki, T.
- 通讯作者:Mochizuki, T.
Using multi-modal network models to visualize and understand how players learn a mechanic in a problem-solving game
使用多模态网络模型可视化并了解玩家如何在解决问题的游戏中学习机制
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Caprenter, Z.
- 通讯作者:Caprenter, Z.
Rule Explanation in Children: A Multimodal Perspective
儿童规则解释:多模态视角
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Lund, K.;Maritaud, L.;Mazur, A.;Ashiq, M.;Eagan, B.;Wang, Y.
- 通讯作者:Wang, Y.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Shaffer其他文献
Pre-operative vein mapping predicts failure of arteriovenous fistula maturation and long-term patency
- DOI:
10.1016/j.jamcollsurg.2013.07.369 - 发表时间:
2013-09-01 - 期刊:
- 影响因子:
- 作者:
Leigh Anne Dageforde;Kelly Harms;Irene D. Feurer;Andrew Wright;David Shaffer - 通讯作者:
David Shaffer
Impact of Retrospective Crossmatch on Deceased Donor Kidney Transplant Outcomes
回顾性交叉配型对已故供者肾移植结局的影响
- DOI:
10.1016/j.ajt.2024.12.183 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:8.200
- 作者:
Wali Johnson;Rachel Forbes;Naila Dhanani;Christian Crannell;Charles Mouch;Laura Hickman;David Shaffer;Bernard Dubray;Sallyanne Fossey - 通讯作者:
Sallyanne Fossey
A critical note on the predictive validity of "the hyperkinetic syndrome".
关于“多动综合症”预测有效性的重要说明。
- DOI:
- 发表时间:
1979 - 期刊:
- 影响因子:0
- 作者:
David Shaffer;Laurence L. Greenhill - 通讯作者:
Laurence L. Greenhill
DSM-III. A step forward or back in terms of the classification of child psychiatric disorders?
DSM-III。
- DOI:
10.1016/s0002-7138(09)61060-8 - 发表时间:
1980 - 期刊:
- 影响因子:0
- 作者:
Michael Rutter;David Shaffer - 通讯作者:
David Shaffer
Epidemiology and Child Psychiatry: Introduction
- DOI:
10.1016/s0002-7138(09)61638-1 - 发表时间:
1981-06-01 - 期刊:
- 影响因子:
- 作者:
David Shaffer - 通讯作者:
David Shaffer
David Shaffer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Shaffer', 18)}}的其他基金
Fourth International Conference on Quantitative Ethnography (ICQE22)
第四届定量民族志国际会议(ICQE22)
- 批准号:
2139106 - 财政年份:2021
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
Sub-group Fair Coding Taken to Scale for Science, Technology, Engineering, and Mathematics Learning
子组公平编码适用于科学、技术、工程和数学学习
- 批准号:
2100320 - 财政年份:2021
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
Local Environmental Modeling: A Toolkit for Incorporating Place-Based Learning into Virtual Internships - A Scalable, Informal STEM Learning Environment
本地环境建模:将本地学习融入虚拟实习的工具包 - 可扩展的非正式 STEM 学习环境
- 批准号:
1713110 - 财政年份:2017
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
Assessing Complex Collaborative STEM Learning at Scale with Epistemic Network Analysis
通过认知网络分析大规模评估复杂的协作 STEM 学习
- 批准号:
1661036 - 财政年份:2017
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
DRK-12: Developing and Testing the Internship-inator, a Virtual Internship in STEM Authorware System
DRK-12:开发和测试 Internship-inator,STEM Authorware 系统中的虚拟实习
- 批准号:
1418288 - 财政年份:2014
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
Collaborative Research: Research Initiation Grants in Engineering Education: Development of Innovation Capacity in Engineering Students Through Virtual Internships
合作研究:工程教育研究启动资助:通过虚拟实习培养工程学生的创新能力
- 批准号:
1340402 - 财政年份:2013
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
Using a Virtual Engineering Internship to Model the Complexity of Engineering Design Problems
利用虚拟工程实习对工程设计问题的复杂性进行建模
- 批准号:
1232656 - 财政年份:2012
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
Measuring Complex STEM Thinking Using Epistemic Network Analysis
使用认知网络分析衡量复杂的 STEM 思维
- 批准号:
1247262 - 财政年份:2012
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
AutoMentor: Virtual Mentoring and Assessment in Computer Games for STEM Learning
AutoMentor:STEM 学习计算机游戏中的虚拟指导和评估
- 批准号:
0918409 - 财政年份:2009
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
Professional Practice Simulations for Engaging, Educating and Assessing Undergraduate Engineers
用于吸引、教育和评估本科工程师的专业实践模拟
- 批准号:
0919347 - 财政年份:2009
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
相似国自然基金
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Imaging for Multi-scale Multi-modal and Multi-disciplinary Analysis for EnGineering and Environmental Sustainability (IM3AGES)
工程和环境可持续性多尺度、多模式和多学科分析成像 (IM3AGES)
- 批准号:
EP/Z531133/1 - 财政年份:2024
- 资助金额:
$ 250万 - 项目类别:
Research Grant
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 250万 - 项目类别:
Experimental modal analysis using network system of coupled oscillators of structure by self-excited vibration caused by mode coupling
模态耦合引起的结构自激振动耦合振子网络系统实验模态分析
- 批准号:
23K03748 - 财政年份:2023
- 资助金额:
$ 250万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of sensory weighting and balance control based on modal analysis during standing
基于模态分析的站立时感觉加权和平衡控制评估
- 批准号:
23K03731 - 财政年份:2023
- 资助金额:
$ 250万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multi-modal 3D image-based analysis of hydrogen embrittlement behavior in Al-Zn-Mg alloy via local hydrogen accumulation
基于多模态 3D 图像的 Al-Zn-Mg 合金局部氢积累氢脆行为分析
- 批准号:
23K13564 - 财政年份:2023
- 资助金额:
$ 250万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A scalable integrated multi-modal single cell analysis framework for gene regulatory and cell-cell interaction networks
用于基因调控和细胞间相互作用网络的可扩展集成多模式单细胞分析框架
- 批准号:
2233887 - 财政年份:2023
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
Deep graphical models and methods for multi-modal biomedical image processing, analysis, and interpretation
用于多模态生物医学图像处理、分析和解释的深度图形模型和方法
- 批准号:
RGPIN-2018-03966 - 财政年份:2022
- 资助金额:
$ 250万 - 项目类别:
Discovery Grants Program - Individual
A Modal Analysis of Open Meta-Programs
开放元程序的模态分析
- 批准号:
574171-2022 - 财政年份:2022
- 资助金额:
$ 250万 - 项目类别:
University Undergraduate Student Research Awards
Multi-modal single cell analysis for investigation of T1D pathogenesis
用于研究 T1D 发病机制的多模式单细胞分析
- 批准号:
10388620 - 财政年份:2022
- 资助金额:
$ 250万 - 项目类别:
A study of a new method for data-driven modal analysis of power systems with power electronics distributed generators as the main power sources
以电力电子分布式发电机为主要电源的电力系统数据驱动模态分析新方法研究
- 批准号:
22K14246 - 财政年份:2022
- 资助金额:
$ 250万 - 项目类别:
Grant-in-Aid for Early-Career Scientists