A scalable integrated multi-modal single cell analysis framework for gene regulatory and cell-cell interaction networks

用于基因调控和细胞间相互作用网络的可扩展集成多模式单细胞分析框架

基本信息

  • 批准号:
    2233887
  • 负责人:
  • 金额:
    $ 54.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Advances in single cell technologies for high-throughput measurement of biological molecules is revolutionizing the study of biology and medicine. While computational tools for various tasks arising in single cell analysis have been developed, they often lack the ability to handle hundreds of datasets and/or millions of cells due to both computer memory and run-time constraints. This project addresses the compelling need for the development of computational methods and software for large scale data analysis, arising due to the rapid accumulation of single cell datasets in public repositories, and the need for analyzing them to fully unravel the complexity of biological systems. The project will lead to novel methods for integrated analysis of multiple types of single cell data, using such data for building biological networks and understanding inter-cellular communication, and development of multiple software products for broader adoption. The project team will include students who will gain valuable experience in interdisciplinary research. Use of software tools developed under the project will be taught at training workshops under the Atlanta Single Cell Omics and Analytics Initiative (https://ascomai.org/), which serves the single cell research communities of Georgia Tech, Emory University, and the Morehouse School of Medicine. The project will include significant involvement of underrepresented individuals. The project will lead to the development of scalable, memory-efficient algorithms and high-performance parallel implementations for large-scale single cell analysis leveraging the inherent parallelism in a multi-socket, multi-core server/workstation that is now commonplace. The problems targeted include 1) single- and multi-modal integration, 2) clustering of single cell RNA-sequencing and single cell ATAC-sequencing data from disparate sources, 3) construction of gene regulatory networks from large-scale integrated multi-modal single cell data, and 4) joint inference of intra-cell gene regulatory networks and cell-cell interaction networks. The research will be validated using several case studies, simulated and real-world benchmark data, and known gold standard benchmarks. The research products will be made available as standalone software tools that will be able to run seamlessly from laptops to workstations to high-end shared memory servers, efficiently exploiting all available resources to push the scale of datasets that can be analyzed. Results of the project will be made available at https://faculty.cc.gatech.edu/~saluru/single-cell and software products will be released as open source on Github at https://github.com/AluruLab.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
用于高通量生物分子测量的单细胞技术的进步正在给生物学和医学的研究带来革命性的变化。虽然已经开发了用于单细胞分析中出现的各种任务的计算工具,但由于计算机内存和运行时间的限制,它们往往缺乏处理数百个数据集和/或数百万个细胞的能力。该项目解决了由于公共储存库中迅速积累单细胞数据集而产生的开发用于大规模数据分析的计算方法和软件的迫切需要,以及为了充分揭示生物系统的复杂性而对其进行分析的需要。该项目将导致对多种类型的单细胞数据进行综合分析的新方法,利用这些数据建立生物网络和了解细胞间通信,并开发多种软件产品以供更广泛地采用。项目团队将包括在跨学科研究中获得宝贵经验的学生。根据该项目开发的软件工具的使用将在亚特兰大单细胞基因组和分析倡议(https://ascomai.org/),)下的培训讲习班上教授,该倡议为佐治亚理工学院、埃默里大学和莫尔豪斯医学院的单细胞研究社区提供服务。该项目将包括代表人数不足的个人的大量参与。该项目将导致开发可扩展的、内存高效的算法和高性能的并行实施,以利用现在常见的多插槽、多核心服务器/工作站中固有的并行性进行大规模单细胞分析。针对的问题包括1)单模式和多模式整合,2)来自不同来源的单细胞RNA测序和单细胞ATAC测序数据的聚类,3)从大规模整合的多模式单细胞数据构建基因调控网络,4)细胞内基因调控网络和细胞间相互作用网络的联合推断。这项研究将使用几个案例研究、模拟和真实世界的基准数据以及已知的黄金标准基准进行验证。研究产品将作为独立的软件工具提供,这些工具将能够从笔记本电脑到工作站再到高端共享内存服务器无缝运行,有效地利用所有可用资源来推动可分析的数据集的规模。该项目的结果将在https://faculty.cc.gatech.edu/~saluru/single-cell上公布,软件产品将在https://github.com/AluruLab.This上以开源形式发布,该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Srinivas Aluru其他文献

Reply to: “Re-evaluating the evidence for a universal genetic boundary among microbial species”
回复:“重新评估微生物物种间通用遗传边界的证据”
  • DOI:
    10.1038/s41467-021-24129-1
  • 发表时间:
    2021-07-07
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Luis M. Rodriguez-R;Chirag Jain;Roth E. Conrad;Srinivas Aluru;Konstantinos T. Konstantinidis
  • 通讯作者:
    Konstantinos T. Konstantinidis
Distribution-Independent Hierarchical Algorithms for the N-body Problem
  • DOI:
    10.1023/a:1008047806690
  • 发表时间:
    1998-01-01
  • 期刊:
  • 影响因子:
    2.700
  • 作者:
    Srinivas Aluru;John Gustafson;G.M. Prabhu;Fatih E. Sevilgen
  • 通讯作者:
    Fatih E. Sevilgen
A Parallel Monte Carlo Algorithm for Protein Accessible Surface Area Computation
蛋白质可及表面积计算的并行蒙特卡罗算法
  • DOI:
    10.1007/978-3-540-46642-0_49
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Srinivas Aluru;D. Ranjan;N. Futamura
  • 通讯作者:
    N. Futamura

Srinivas Aluru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Srinivas Aluru', 18)}}的其他基金

BD Hubs: Collaborative Proposal: SOUTH:The South Big Data Innovation Hub
BD Hubs:合作提案:SOUTH:南方大数据创新中心
  • 批准号:
    1916589
  • 财政年份:
    2019
  • 资助金额:
    $ 54.58万
  • 项目类别:
    Cooperative Agreement
AF: Small: Algorithmic Techniques for High-throughput Analysis of Long Reads
AF:小:长读长高通量分析的算法技术
  • 批准号:
    1816027
  • 财政年份:
    2018
  • 资助金额:
    $ 54.58万
  • 项目类别:
    Standard Grant
EAGER: A Framework for Learning Graph Algorithms with Applications to Social and Gene Networks
EAGER:学习图算法及其在社交和基因网络中的应用的框架
  • 批准号:
    1841351
  • 财政年份:
    2018
  • 资助金额:
    $ 54.58万
  • 项目类别:
    Standard Grant
MRI: Acquisition of an HPC System for Data-Driven Discovery in Computational Astrophysics, Biology, Chemistry, and Materials Science
MRI:获取 HPC 系统,用于计算天体物理学、生物学、化学和材料科学中的数据驱动发现
  • 批准号:
    1828187
  • 财政年份:
    2018
  • 资助金额:
    $ 54.58万
  • 项目类别:
    Standard Grant
Big Data Regional Innovation Hubs and Spokes Workshop
大数据区域创新中心和辐射研讨会
  • 批准号:
    1736154
  • 财政年份:
    2017
  • 资助金额:
    $ 54.58万
  • 项目类别:
    Standard Grant
SHF:Small: Reproducibility and Comprehensive Assessment of Next Generation Sequencing Bioinformatics Software
SHF:Small:下一代测序生物信息学软件的重现性和综合评估
  • 批准号:
    1718479
  • 财政年份:
    2017
  • 资助金额:
    $ 54.58万
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative Research: Sequential and Parallel Algorithms for Approximate Sequence Matching with Applications to Computational Biology
AF:媒介:协作研究:近似序列匹配的顺序和并行算法及其在计算生物学中的应用
  • 批准号:
    1704552
  • 财政年份:
    2017
  • 资助金额:
    $ 54.58万
  • 项目类别:
    Standard Grant
BD Hubs: Collaborative Proposal: SOUTH: A Big Data Innovation Hub for the South Region
BD 中心:合作提案:SOUTH:南部地区的大数据创新中心
  • 批准号:
    1550305
  • 财政年份:
    2015
  • 资助金额:
    $ 54.58万
  • 项目类别:
    Standard Grant
EAGER: Exploratory Research on the Micron Automata Processor
EAGER:微米自动机处理器的探索性研究
  • 批准号:
    1448333
  • 财政年份:
    2014
  • 资助金额:
    $ 54.58万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Towards high-performance flexible transcription factor-DNA docking
合作研究:ABI 创新:迈向高性能灵活的转录因子-DNA 对接
  • 批准号:
    1356065
  • 财政年份:
    2014
  • 资助金额:
    $ 54.58万
  • 项目类别:
    Continuing Grant

相似国自然基金

greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
焦虑症小鼠模型整合模式(Integrated) 行为和精细行为评价体系的构建
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
HER2特异性双抗原表位识别诊疗一体化探针研制与临床前诊疗效能研究
  • 批准号:
    82372014
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
基于贝叶斯网络可靠度演进模型的城市雨水管网整体优化设计理论研究
  • 批准号:
    51008191
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

An Integrated Life-course Approach for Person-centred Solutions and Care for Ageing with Multi-morbidity in the European Regions - STAGE; Stay Healthy Through Ageing
欧洲地区以人为本的解决方案和针对多种疾病的老龄化护理的综合生命全程方法 - STAGE;
  • 批准号:
    10112787
  • 财政年份:
    2024
  • 资助金额:
    $ 54.58万
  • 项目类别:
    EU-Funded
Hybrid Analytical and Data-Driven Models for Integrated Simulation and Design of Complex High Frequency Multi-Winding Magnetic Components
用于复杂高频多绕组磁性元件集成仿真和设计的混合分析和数据驱动模型
  • 批准号:
    2344664
  • 财政年份:
    2024
  • 资助金额:
    $ 54.58万
  • 项目类别:
    Standard Grant
Feasibility Trial of a Novel Integrated Mindfulness and Acupuncture Program to Improve Outcomes after Spine Surgery (I-MASS)
旨在改善脊柱手术后效果的新型综合正念和针灸计划的可行性试验(I-MASS)
  • 批准号:
    10649741
  • 财政年份:
    2023
  • 资助金额:
    $ 54.58万
  • 项目类别:
Investigating facilitator-driven, multi-level implementation strategies in Federally Qualified Health Centers to improve provider recommendation and HPV vaccination rates among Latino/a adolescents
调查联邦合格健康中心中促进者驱动的多层次实施策略,以提高拉丁裔/非裔青少年的医疗服务提供者推荐和 HPV 疫苗接种率
  • 批准号:
    10737168
  • 财政年份:
    2023
  • 资助金额:
    $ 54.58万
  • 项目类别:
Reconfigurable 3D Origami Probes for Multi-modal Neural Interface
用于多模态神经接口的可重构 3D 折纸探针
  • 批准号:
    10738994
  • 财政年份:
    2023
  • 资助金额:
    $ 54.58万
  • 项目类别:
Collaborative Research: NeTS: Medium: An Integrated Multi-Time Scale Approach to High-Performance, Intelligent, and Secure O-RAN based NextG
合作研究:NeTS:Medium:基于 NextG 的高性能、智能和安全 O-RAN 的集成多时间尺度方法
  • 批准号:
    2312447
  • 财政年份:
    2023
  • 资助金额:
    $ 54.58万
  • 项目类别:
    Standard Grant
Integrated exposome profiling to identify environmental risk factors of metabolic disease in mid- and late-life
综合暴露组分析可识别中晚年代谢疾病的环境危险因素
  • 批准号:
    10638457
  • 财政年份:
    2023
  • 资助金额:
    $ 54.58万
  • 项目类别:
Integrated Supportive Care Policies to Improve Maternal Health Equity: Evaluating the Multi-level Effects and Implementation of Doula Programs for Medicaid-Eligible Birthing People in New York City
改善孕产妇健康公平的综合支持性护理政策:评估纽约市符合医疗补助资格的新生儿导乐计划的多层次影响和实施情况
  • 批准号:
    10833919
  • 财政年份:
    2023
  • 资助金额:
    $ 54.58万
  • 项目类别:
Administrative Core: An Integrated Multi PI And Multi Site Management Plan For Enhanced Echinobase
管理核心:增强型 Echinobase 的集成多 PI 和多站点管理计划
  • 批准号:
    10715579
  • 财政年份:
    2023
  • 资助金额:
    $ 54.58万
  • 项目类别:
Development and Testing of an Integrated Care Coordination Intervention for Alcohol Use Disorder Recovery after Liver Transplantation
肝移植后酒精使用障碍康复综合护理协调干预措施的开发和测试
  • 批准号:
    10723316
  • 财政年份:
    2023
  • 资助金额:
    $ 54.58万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了